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Stacking fault formation created by plastic deformation
at low temperature and small scales in silicon
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Several studies have recently reported the formation of stacking faults in silicon compressed at low tempera-
tures and high stresses. This observation contradicts the generally accepted framework for the plastic deformation
of silicon. We propose here an original plasticity mechanism that could potentially explain stacking fault
formation in these conditions: the nucleation and migration of a partial edge dislocation with Burgers vector
1
3 〈112〉. These results are obtained thanks to a multiscale approach combining three computational methods.
Dislocation nucleation is determined by molecular dynamics in both a nanowire and a 2D slab. The latter results
are used as inputs for hybrid MD/DFT “learn on the fly” calculations, allowing for studying the dynamical
propagation of the dislocation. Selected configurations at different steps are next used for initiating nudged
elastic band density functional theory calculations. These calculations revealed that the dislocation displacement
mechanism depends on the compression strain. For low values, a dangling bond is temporarily created in the core,
resulting in high activation energies. For compression strains larger than about 8%, the reduction of the interlayer
distance allows for a more complex displacement mechanism with no dangling bonds in the dislocation core and
a significant decrease of the activation energy.
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I. INTRODUCTION

Thanks to a large number of dedicated investigations, it
seems that the mechanical properties of silicon are now well
known. In the usual conditions, i.e., for a mechanical stress
exerted on a macroscopic sample at room temperature, silicon
is brittle as expected for a covalent material. At high tempera-
ture, roughly above 600 ◦C, the plastic deformation proceeds
by 30◦ and 90◦ Shockley partial dislocations located in {111}
glide set planes, the narrowly spaced planes along the 〈111〉
direction [1–3]. Leading and trailing partial dislocations are
separated by an intrinsic stacking fault. Plasticity can also be
obtained at low temperatures by using a confining pressure
which prevents cracks opening and fracture propagation [4].
In these conditions, both experiments and numerical simu-
lations reveal that dislocations are not dissociated and glide
in the widely spaced {111} “shuffle” set of planes [5–8].
The nondissociation of these dislocations is related to the
prohibitive energetic cost of a stacking fault in the shuffle
{111} planes [9]. There is currently a large consensus in the
community regarding the existence of separate shuffle and
glide dislocation regimes, although the transition from one to
the other is not fully explained [10,11].

Reducing the characteristic dimensions can also lead to
plastic deformation of silicon at low temperatures [12]. This
has been demonstrated in the case of the uniaxial compression
at room temperature of nanopillars [13–16] and nanoparticles
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[14,17,18]. An intriguing aspect in some of these studies is
the report of {111} stacking faults. For instance, they are
observed in compressed nanometric silicon nanocubes [17].
The authors proposed that below a given size there could be a
transition from shuffle perfect to glide partial dislocations, but
it is not clear why such a transition would occur. Twinning was
also reported in bent silicon nanowires [19]. More recently,
Merabet et al. performed high-resolution transmission elec-
tron microscopy experiments on compressed nanopillars, and
reported the presence of stacking faults and complex dislo-
cation patterns [16]. A comparison with atomistic simulations
suggests that the stacking faults could be associated with shuf-
fle partial dislocations [20]. Similar defects were predicted in
an earlier study [21], but never observed since. As yet there is
therefore no clear consensus or firmly established conclusions
regarding the formation mechanisms of these stacking faults.

There is a crucial need for a better understanding of mate-
rial properties at small scales, and the mechanical behavior
of silicon is no exception. Silicon-based nano-objects are
particularly promising in numerous applications, such as na-
noelectromechanical systems [22] or Li-ion batteries [23–25].
Furthermore, silicon nanostructures are also key systems for
elastic strain engineering [26]. In all these examples, relevant
conditions of use are low temperatures and high stresses.
Therefore improving our knowledge on plasticity properties
of silicon in this regime is important both for fundamental and
applied sciences.

In the present study we describe an original mechanism
leading to stacking fault formation during the plastic deforma-
tion of silicon at high stress and room temperature. A similar
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FIG. 1. Multiscale modeling framework. From left to right:
〈110〉-oriented cylindrical nanowire (MD calculations), 2D-periodic
slabs (both MD and LOTF calculations), 1D-periodic system (DFT-
NEB). The dashed lines represent the supercells used in periodic
boundary calculations.

mechanism was observed in an earlier investigation of dis-
location nucleation [27] by some of the present authors. This
study was based on classical molecular dynamics calculations,
and at that time there were doubts about the reliability of
the used interatomic potentials in the high-stress regime. The
aforementioned new experimental evidence of stacking fault
formation in silicon at room temperature, as well as a recent
work on dislocation nucleation [28], motivated us to reopen
the case, but this time using more accurate electronic structure
calculation techniques. To minimize errors associated with
small system sizes [8], we develop a multiscale approach
based on classical molecular dynamics (MD) simulations, the
“learn on the fly” (LOTF) technique, and density functional
theory (DFT) calculations combined with the nudged elastic
band (NEB) method.

The paper is organized in a standard way. The multiscale
methodology and the three calculation frameworks used in
this work are described in the Sec. II. All our results are
reported then discussed in the Secs. III and IV. In the last
section, we summarize the results.

II. METHODS

The multiscale methodology employed in this work is
sketched in Fig. 1. First, MD calculations are performed for
large nanowires and small 2D-periodic slabs. The output of
MD slab calculations leading to dislocation nucleation and
stacking fault formation is next used as input for more time-
consuming LOTF simulations. The latter allow for exploring
the dynamics of dislocation migration with accuracy close to
first principles. Finally, regions of interest from LOTF results
are extracted and employed to feed DFT-NEB calculations, to
determine the variation of activation energy as a function of
the applied compression strain.

A. MD simulations

We used the code LAMMPS [29,30] to perform the classical
MD calculations. Silicon is described by the SWm interatomic
potential [31], an improved version of the original Stillinger-
Weber potential for modeling defects and plastic behavior.
The lattice parameter is a0 = 5.431 Å. A time step in the range
0.5–1 fs is used, which allows for reasonable simulation times
while ensuring energy conservation.

Two different models were considered. One is a 〈110〉-
oriented cylindrical nanowire with a length of 23.4 nm and a
diameter of 11.6 nm including 105 209 atoms. An amorphous
coating is created by annealing the nanowire at 3000 K during
5 ps, leading to surface melting, followed by a linear decrease
of the temperature to 300 K for another 5 ps. This is intended
to reproduce the disordered shell which is often observed at
the surface of silicon nanopillars [16]. Next, the resulting
system is compressed according to the following procedure.
At one end of the nanowire, six 〈110〉 atomic layers are frozen
in their initial positions. A flat punch, modeled by a repulsive
planar force field [32], is applied on the other end. The flat
punch position is modified at each time step with a strain rate
equal to 106 s−1. The temperature is controlled by a Nosé-
Hoover thermostat [33,34].

The second model is a 2D silicon slab, with orientations
x̂ = [001], ŷ = [11̄0], and ẑ = [110]. The dimensions are
7.5a0 × a0/

√
2 × 10a0

√
2. Periodic boundary conditions are

enforced only for ŷ and ẑ orientations, thus yielding a slab
with (100) surfaces. A step is created in one of these surfaces
to act as a stress localization center and to favor disloca-
tion nucleation [35]. The slab is compressed by decreasing
the supercell dimension along ẑ at regular times during a
temperature-controlled simulation. At each compression step
a remapping of atomic positions is performed in order to avoid
deformation waves.

B. LOTF

A hybrid method combining forces computed from both
quantum calculations and a classical empirical potential is
used to investigate the mechanisms obtained from classical
MD calculations. Reaching a better evaluation of the forces
is indeed especially important in the active region where the
defect propagates with a series of bond breaking and rebond-
ing events, and where the accuracy of a fully classical model
is questionable. In this work we use an implementation of the
LOTF method that was already described in several previous
works and that is especially well suited for silicon-based sys-
tems [36–39].

The principle of the method as well as the algorithm that
selects the quantum region are detailed in Appendix A. All
remaining technical details are identical to those already re-
ported in [39] and in its supplementary material. In the present
implementation the initial system is imported from MD cal-
culations using the 2D slab model, with similar dimensions
and orientations. Only the length along ŷ was multiplied by
2 to obtain a cell dimension larger than twice the potential
cutoff. The lattice parameter used in LOTF calculations is
a0 = 5.421 Å.

C. DFT-NEB calculations

The DFT calculations were carried out using the Quantum
ESPRESSO suite of codes [40]. The standard Perdew-
Burke-Ernzerhof (PBE) functional is used to determine
exchange-correlation contributions [41]. The electron-ion in-
teractions are computed thanks to the full-potential projector
augmented wave (PAW) method [42]. The electronic structure
convergence was tested on a silicon bulk system with a dense
k-point grid. Plane-wave and charge density cutoffs of 25 Ry
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and 200 Ry yielded a lattice constant a0 = 5.4698 Å and a
bulk modulus of 91.2 GPa.

For modeling the defect, an orthorhombic supercell of
dimensions 42 Å × a0

√
2 × 42 Å, including 177 atoms, is

chosen so as to allow periodicity only along the disloca-
tion line (corresponding to the ŷ axis of the slab in MD
simulations). For the two other directions, the supercell is
large enough to ensure a minimum distance of 9 Å between
consecutive replicas, which is large enough to suppress poten-
tial interactions (Fig. 1). The electronic structure calculations
are carried out using a 1 × 4 × 1 Monkhorst-Pack grid [43]
for the Brillouin zone sampling, and the Methfessel-Paxton
smearing scheme [44]. More details for the model can be
found in Sec. III C.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach
is employed to relax ions for single systems, with a
convergence threshold of 2 × 10−3 eV Å−1. For DFT-NEB
calculations [45], seven replicas are considered, of which
five are optimized using the quick-min algorithm, a conver-
gence threshold of 0.05 eV Å−1, and spring constants of 0.04
hartrees. After convergence, a second DFT-NEB calculation
was run with the climbing image technique [46], in order to
accurately determine the transition state.

III. RESULTS

In the following sections the results of the different simu-
lations are described and analyzed.

A. Nanowire

We first focus on the nanowire compressed by a flat punch
at 300 K. For low strain values, the deformation of the crys-
talline core remains elastic. At 9.36%, the plastic deformation
of the crystalline core starts by the nucleation of a dislocation
loop from the top of the nanowire. The initiation of plastic
deformation in the vicinity of the flat punch is reported in sev-
eral studies [16,20,48]. The dislocation slips in the (111) plane
and escapes laterally from the nanowire, leaving a stacking
fault behind (Fig. 2). At 9.87% a second slip system is acti-
vated with the nucleation from the base of the nanowire of a
dislocation loop expanding in a (111̄) plane. Secondary loops
are next nucleated in adjacent planes. As for the first event,
dislocation loop expansion leads to stacking fault formation
and twinning (Fig. 2). This deformation mode is similar to the
one reported in an earlier study [27].

In the traditional picture of dislocations in silicon, stacking
faults are exclusively associated with Shockley partial disloca-
tions with 1

6 〈112〉 Burgers vectors and located in a glide set of
{111} planes. Although dislocations identified in the present
work also glide in {111} planes, we determine the Burgers
vector to be equal to 1

3 〈112〉. The leading part of the loop front
has an edge character with a line along 〈110〉. Enlarged views
of this region and of a dislocation core are shown in Fig. 2.
The core is characterized by a 7-atom ring sharing two atoms
with a 5-atom ring, with no dangling bonds, and appears to
be identical to previously reported core structures [27,28].
A comparable topology is reported for the edge dislocation
5
7 -atom core in GaN [49] and the 60◦ dislocation G core in sil-
icon [8]. By analogy, one could consider that this dislocation

FIG. 2. View of a 5 Å thick slice in the center of the nanowire,
for a compression strain equal to 9.873%. The spheres represent
silicon atoms, with colors according to their environment deter-
mined with the polyhedral template matching method [47]. Gold:
Cubic diamond; blue: hexagonal diamond; green: unidentified. Two
crystalline regions have been plastically deformed, leaving stacking
faults revealed by the presence of hexagonal diamond atoms. The
right pictures show enlarged views of the framed areas.

core belongs to the glide set of {111} planes. However, it can
also be viewed as the sum of two Shockley partials [16,20,21]
with Burgers vector 1

6 〈112〉, located in the two shuffle planes
on both sides of the stacking fault.

The influence of strain rate and temperature was checked
with additional calculations. The same deformation mecha-
nism is obtained in all cases, which confirms its dominant role
for compression along the 〈110〉 orientation. Only the onset
of plasticity depends on strain rate and temperature. For a rate
equal to 108 s−1 and at 300 K, the first dislocation is nucleated
at a strain of 10.43%. Keeping this strain rate but increasing
the temperature to 500 K, the first nucleation occurred at a
lower strain of 9.52%. This behavior is in agreement with
the thermally activated character of dislocation nucleation
[50,51]. It also suggests that the energy barrier for dislocation
nucleation is higher than the one for dislocation migration. In
the present conditions, we then obtain an athermal expansion
of the dislocation.

B. 2D slab

We also carry out MD calculations of 2D slabs, which are
periodic along ŷ = [11̄0] with a single period and compressed
along ẑ = [110]. Nucleated dislocations are then necessarily
straight, which allows for an easier analysis of dislocation core
motion than in the nanowire. The slab is large enough to en-
sure that the internal stress state is similar in both the nanowire
and the slab during compression. At 600 K, the deformation
remains elastic up to a strain equal to 6.9%. Then a dislocation
nucleates and propagates in {111} planes while leaving an
intrinsic stacking fault in its trailing path. This dislocation is
the same as those observed during the plastic deformation of
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nanowires; i.e., it is an edge partial dislocation with a Burgers
vector of 1

3 〈112〉. The nucleation strain can be compared to
values found in previous investigations. Godet et al. deter-
mined a critical strain of 7.0% at 0 K for the original SW
potential [27], with a similar surface geometry. More recently,
Zhang and Cai reported that the same defect could nucleate at
5.6% at 0 K for the same potential but with a bent surface step.
This value could even be as low as 5.3% if another potential is
used [28]. These results tend to suggest that both the tempera-
ture and the interatomic potential have a weaker influence on
the nucleation strain than the surface conformation. In fact the
nucleation strain is larger for a flat surface, with values greater
than 10%. This is not surprising since the critical influence of
surface geometry on dislocation nucleation has been largely
documented, in particular in Si [52].

At present the occurrence of stacking fault expansion at
room temperature associated with this unusual dislocation
has only been observed in classical MD simulations. To cor-
roborate this result, we next carry out LOTF calculations
using the 2D slab model. Our initial configuration is ex-
tracted from MD simulations. Dimensions are rescaled to
account for lattice parameter differences between MD and
LOTF, and residual forces are relaxed at 0% compression
strain. First, we focus on the mechanism leading to dislo-
cation core displacement and stacking fault expansion. The
system is compressed at 12% by reducing the dimension along
the ẑ axis, and let free to evolve using a damped dynamics
algorithm. We observe the displacement of the dislocation
core in a {111} plane and along a 〈112〉 direction, leading
to the stacking fault expansion. It takes about 6 ps for the
dislocation to travel over 13.32 Å (Fig. 3). The motion is
not continuous, with periods where the dislocation seems at
rest alternating with displacements of one lattice repetition.
Upon displacements, temperature rises of 30 K are observed,
suggesting a decrease in potential energy. This result con-
firms that the plasticity mechanism obtained in classical
MD calculations is plausible, albeit a large applied strain is
required.

The sequence of core atom displacements leading to
dislocation core migration and stacking fault expansion is
represented in Fig. 4. At 4.32 ps, the dislocation core is lo-
cated in a Peierls valley and is close to its stable geometry.
LOTF simulations show that the shift of the core to the next
valley along 〈112〉 requires the rotation along ŷ = [11̄0] of
the dimer composed of atoms 2 and 3, which bonds atom 3
with 1, and 2 with 4. The dimer rotation directly leads to the
stacking fault expansion. The red arrows in Fig. 4 shows the
most straightforward path. However, our calculations reveal
that the mechanism is more complex and is decomposed into
several elementary steps. The first one, at 4.80 ps, is somewhat
counterintuitive. Atom 2 moves close enough to make a bond
with atom 5. Next, the bond between atoms 2 and 1 is loosened
(4.83 ps). It allows for atom 1 to connect to atom 3 (4.85 ps).
As a consequence, the bond between atoms 3 and 4 breaks
(4.89 ps), followed by the creation of a new bond between
atoms 2 and 4 (4.91 ps). The last step involves the breaking of
the bond between atoms 2 and 5 (4.93 ps). At about 5.06 ps,
the process is completed. It is interesting to note that overco-
ordination is always favored compared to undercoordination
during the different steps.

FIG. 3. Dislocation displacement and stacking fault expansion
(blue spheres) in a 2D silicon slab, obtained from a LOTF calculation
at a 12% compression strain. Top and bottom images correspond to
simulation times of 0.19 ps and 6.10 ps, respectively. The atoms
represented by red spheres are included in the electronic structure
calculation of LOTF.

C. DFT-NEB

Atomistic simulations of dynamical phenomena, as re-
ported above, are severely limited in timescale. The inves-
tigations of dislocation nucleation and propagation are then
usually restricted to high-stress regimes for which the activa-
tion energies are low. Such a limitation can be overcome using
saddle-point search techniques like NEB in combination with
DFT, the results of which are described in this section.

The inputs for DFT-NEB calculations are constructed from
the LOTF results at a 12% compression strain described above
(Fig. 4). First, we select two configurations in which the
dislocation is approximately located in two adjacent Peierls
valleys, to define the initial and final images in NEB calcu-
lations. A homogeneous scaling of the supercell dimension
along ẑ is made to obtain compression strains lower than
12%. Initial and final configurations are next relaxed at 0 K
with LOTF using a damped dynamics algorithm. Finally, they
both include a dislocation core in a Peierls valley, relaxed
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FIG. 4. Sequence of dislocation core geometries extracted from a LOTF calculation (12% compression, damped dynamics), at various
times. Atoms marked 1–5 are those mainly involved in the core displacement (see text for details). A bond is drawn between two atoms when
their separation is lower than or equal to 2.8 Å. Note that the 2D slab has been rotated along ŷ = [11̄0] compared to Fig. 3.

at the DFT level of accuracy, and embedded in the strain
field described by an interatomic potential. In a second step,
approximately spherical clusters of 137 silicon atoms are ex-
tracted from these two configurations. The clusters’ center is
chosen midway between the dislocation cores in the two ge-
ometries. This allows for minimizing boundary effects in the
determination of dislocation migration energies [53]. After an
appropriate rescaling to take into account the lattice parameter
difference between LOTF and DFT, each cluster is next em-
bedded in the orthorhombic supercell described in Sec. II C.
The structure is then periodic along the ŷ while a surface
is present along the two other directions. Undercoordinated
silicon surface atoms are next passivated by hydrogen atoms,
initially located at 1.49 Å, amounting to 177 atoms in total.
The energy of the two configurations is then minimized by
atomic relaxation computed by DFT, to obtain the initial and
final images for DFT-NEB calculations. In these calculations,
the positions of silicon atoms close to the surface are not up-
dated, thus ensuring that the strain field exerted on dislocation
cores is the same as in LOTF calculations. Figure 5 shows an
example of relaxed configuration.

For a compression strain of 12%, we find that the disloca-
tion core moves to the next Peierls valley for both initial and
final images, in agreement with LOTF calculations. This result
suggests that such a strain induces a resolved shear stress
greater than the Peierls stress of the dislocation. Motionless
cores are recovered for compression strains lower than or
equal to 11%. A geometrical characterization of the disloca-
tion core relaxed with no compression strain is included in
Appendix B.

For DFT-NEB calculations, the inputs for the five inter-
mediate images are generated by linear interpolation of the
position of all atoms between the initial and final configura-
tions. Both silicon atoms close to the surface and hydrogen
atoms are fixed to their initial positions during the NEB relax-
ation. However, note that the positions of these atoms slightly
change through the successive images, which reflects the
strain field evolution associated with dislocation migration.

The top graph in Fig. 6 shows the results of the NEB cal-
culations. The energy curves along the minimum energy path

(MEP) are characterized by an asymmetric shape, as expected
for dislocation displacement under strain [53,55]. Also, the
maximum energy along the MEP decreases as a function of
compression strain. For strains greater than 3% the minimum
energy along the path does not correspond to the final NEB
image. We believe that this behavior might be the consequence
of the use of fixed surfaces with interpolated positions. How-
ever, it is assumed to have a negligible influence on the energy
barrier. The bottom graph shows the same energy variations
but now as a function of the dislocation core position. The
latter is determined by monitoring the progressive formation
of the stacking fault (Appendix C). The curves suggest that
increasing the compression strain displaces the saddle point
toward the starting geometry.

FIG. 5. Initial image for NEB calculation at 10% compression,
obtained by DFT relaxation. Gold/violet (white) spheres represent
silicon (hydrogen) atoms, respectively. Violet atoms were not al-
lowed to move during relaxation.
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FIG. 6. Variations of relative energy as a function of (top) NEB
images and (bottom) dislocation core position. Each color corre-
sponds to a different compression strain. Lines connecting dots
are guides for the eye obtained from spline-based interpolations.
The dislocation position is estimated using the method described in
Appendix C.

The activation energies Q(ε) determined as maximums of
energy barriers are reported in Fig. 7. As expected, the values
decrease for an increasing compression strain and become
lower than 1 eV above 9%. These data are fitted using the
expression

Q(ε) = Wp

(
1 − ε

εath

)n

(1)

yielding a Peierls energy Wp = 1.744 eV, an athermal com-
pression limit εath = 11.07%, and an exponent n = 0.346. The
activation energy as a function of the resolved shear stress
σ is readily obtained by assuming that σ (ε) = mEε (with
m = 0.471 the Schmid factor and E = 170 GPa the elastic
modulus for compression along 〈110〉 in silicon). Next, the
activation volume �(σ ) = −∂Q/∂σ can be computed. With
no compression, � is equal to 0.122 b3 (b = a0

√
6/3), which

corresponds to a localized atomistic mechanism [56]. Fur-
thermore, we observe that �(σ ) diverges if σ is close to the
athermal limit, since n is lower than 1. It is unclear how this
behavior could be explained.

FIG. 7. Activation energy for dislocation displacement as a func-
tion of the applied compression strain along 〈110〉 (white dots). The
red line connecting dots is the result of a fit using Eq. (1). The green
line is the activation energy predicted by a Peierls model. The three
inset images represent the atomic structure at the saddle point at
different compression strains (note that the structures are oriented
like in Fig. 4, with the dislocation moving from left to right). A bond
is drawn between two atoms when their separation is lower than or
equal to 2.8 Å. Also shown is the electronic density in the (11̄0) plane
passing through atoms 1–5 (same atoms as in Fig. 4). The color map
ranges from 0.0 e− bohr−3 (blue) to 0.082 e− bohr−3 (red). Maxima
are found in the middle of a bond, with values in excellent agreement
with the literature [54].

To gain further insights, we compare the DFT results with
an ideal Peierls model. For the latter, the energy variation can
be written

E (x, ε) = Wp

2

[
1 − cos

(
2πx

d

)]
− σ (ε)bxl. (2)

The first term is the Peierls energy approximated by a sinusoid
[57]. We use Wp = 1.744 eV from the DFT-NEB fit. x is the
dislocation position and d = a0

√
6/4 is the lattice period-

icity along 〈112〉. The second term is the mechanical work
due to dislocation displacement: b = a0

√
6/3 is the Burgers

vector norm and l = a0/
√

2 the dislocation length along the
ŷ axis. Finally, the resolved shear stress σ (ε) is as previ-
ously approximated by mEε. In principle, one should also
add the contribution due to stacking fault expansion +lxγ .
It is neglected here due to the low γ value (65 mJ m−2) of
the silicon intrinsic stacking fault energy [58]. The activa-
tion energy for each ε value is obtained as the maximum of
E (x, ε) for x ∈ [0, d]. The comparison in Fig. 7 shows that
the shape of DFT calculated energies is significantly different
from the Peierls model, with higher values except for com-
pression strains greater than 11%. This suggests that there
is an intricate relation between the lattice friction associated
with dislocation displacement and the applied compression.

Figure 7 also shows the geometry and electronic structure
at the saddle point for three strain values. The electronic
structure allows for a finer analysis of the presence of atomic
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bonds, compared to a simple distance criterion. At 3% com-
pression strain, the saddle configuration exhibits a clear
dangling bond in the core, and is markedly different from
all intermediate geometries determined using LOTF (Fig. 4).
This configuration is obtained by bonding atoms 2 and 4. The
next step is the atom 3 making a bond with atom 1. This simple
two-step mechanism corresponds to the straightforward path
depicted by red arrows in Fig. 4. Increasing the compression
strain reveals a gradual change of the mechanism. At 6%, it re-
sembles the one at 3%, except that the existence of a dangling
bond in the saddle configuration is more ambiguous. At 8%,
the saddle configuration in Fig. 7 is topologically equivalent to
the initial NEB image, with no broken or new bonds. Finally,
at 9%–11%, atoms 2 and 5 are much closer than for lower
strain values. There is also an increase of electronic density
between these atoms, supporting the existence of a bond. For
such strain values, the saddle geometry is similar to the LOTF
configuration represented in Fig. 4 (4.80 ps). The analysis of
the next NEB images confirms that the DFT-NEB mechanism
at 9%–11% is like the one obtained with LOTF at 12%.

Our DFT-NEB calculations indicate that the mechanism
leading to dislocation displacement and stacking fault expan-
sion depends on the applied compression strain. For values
lower than 9%, the core dislocation moves by the rotation of
the dimer formed by atoms 2 and 3 (red arrows in Fig. 4). This
process requires the temporary existence of a dangling bond in
the core, an energetically costly defect in silicon, which prob-
ably explains the high activation energies. At higher strain
values the mechanism depicted in Fig. 4 operates. This mech-
anism is more complex but without dangling bonds clearly
occurring with dislocation displacement. It is noteworthy that
atoms 2 and 5 in Fig. 4 are aligned along ẑ in two successive
(110) atomic layers, and their separation is directly propor-
tional to the applied strain. Increasing the compression along
the ẑ axis then facilitates the activation of the mechanism and
reduces the associated energy. This would explain the change
of slope at high strain values of the DFT-NEB activation
energy curve in Fig. 7.

IV. DISCUSSION

All results obtained in our study demonstrate that the ac-
tivation of the 1

3 〈112〉{111} slip system can occur in silicon
compressed along the 〈110〉 orientation. Its partial character
leads to the formation and expansion of an intrinsic stacking
fault. This key finding raises the question of the significance
of this deformation mode. DFT-NEB results indicate that the
activation energy is relatively high, being greater than 1 eV
when the compression strain is below 9%. We determine that
it is equal to 1.74 eV at zero strain. Such high values are
conflicting with an activation at room temperature, making
high stress/strain conditions a necessary requirement. It is
obviously not possible in bulk silicon, which fails in a brittle
manner due to the formation and propagation of cracks. How-
ever, large strain/stress values have been reported in various
nanostructures [13,59–63]. In these systems, the occurrence
of the slip system studied here cannot be excluded.

Several experiments reported the presence of stacking
faults in silicon nanostructures. For instance, Wagner and
co-workers observed by transmission electron microscopy the

presence of a stacking fault created during the flat punch
compression of silicon blunt nanocubes at room temperature
[17]. They assumed that it was produced by the propagation
of a single glide partial dislocation. It is conceivable that
such a dislocation could nucleate in a region where a beta-
tin phase transition occurred [64]. While there is no definite
proof, it is probably different from the mechanism described
here, since the compression orientation was 〈100〉 [17]. The
compression of 〈110〉-oriented silicon nanopillars was inves-
tigated by Merabet et al. [16,20]. Their transmission electron
microscopy observations revealed the presence of stacking
faults, tentatively explained by the dissociation of shuffle 60◦
dislocations into shuffle partial dislocations [21]. This latter
mechanism might also explain the formation of stacking faults
during compression of 〈111〉 oriented nanopillars [65]. Both
nucleation from the beta-tin phase and shuffle dislocation
dissociation have been recently discussed by Rabier [66]. Our
work provides an original and alternative explanation for the
formation of stacking faults in silicon at small scales.

Another interesting aspect concerns the current terminol-
ogy at use for dislocations in silicon. Since the pioneering
work by Hornstra [9], it is common to distinguish dislo-
cations depending whether they belong to narrowly spaced
{111} “glide” planes or widely spaced {111} “shuffle” planes
[57]. Until ten years ago, the situation was thought to be
relatively simple with dissociated glide and perfect shuffle
set dislocations operating at high and low temperatures, re-
spectively [7]. New experimental and theoretical data tend
to suggest a greater intricacy, especially at small scale. We
already discussed mounting evidence of stacking faults and
dissociated dislocations at low temperature [16,17,20,63–65].
The distinction between glide and shuffle set dislocations also
seems to dilute. It is in fact difficult to decide in which set
of planes the dislocation investigated in this work belongs to,
because the core spreads over several glide and shuffle planes.
Note that the same can be said of the S3 core configuration for
the 60◦ dislocation [6]. These dislocation cores are spread out
enough to be described as shuffle-glide complexes, borrowing
the terminology introduced by Zhang and Cai [28].

V. CONCLUSION

We report the formation of a stacking fault in silicon com-
pressed along 〈110〉 at low temperature, thanks to an original
plasticity mechanism. A partial edge dislocation of Burgers
vector equal to 1

3 〈112〉 nucleates and slips in {111} planes,
leaving an intrinsic stacking fault behind. These results are
obtained by combining three different simulation methods,
molecular dynamics, learn on the fly, and density functional
theory. We fully characterize the dislocation core geometry
and mobility. In particular, we describe the atomistic mecha-
nism allowing for dislocation displacement and stacking fault
expansion. We find that this mechanism changes according
to the compression strain. At low strain values the dislocation
core displacement is associated with the creation of a dangling
bond, with a large energy barrier which inhibits its activation.
For compression strains greater than about 8%, the reduction
of the interlayer distance allows for a more complex displace-
ment mechanism with no dangling bond in the dislocation
core and a significant decrease of the activation energy. Our
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FIG. 8. (a) Structure of the initial configuration of the 1206-
atom slab under 12% compression. The colors indicate the different
regions used in the hybrid LOTF scheme. Red: Quantum region
(reference forces calculated from DFT-SIESTA [67]); light cyan:
classical part of the fitting region (reference forces calculated from
a classical potential); gold: classical region (forces calculated from a
classical potential). The fitting region encompasses the red and light
cyan atoms. (b) Configuration obtained from (a) after 3.0 ps of LOTF
damped dynamics. (c) Configuration obtained from (a) after 4.1 ps of
LOTF damped dynamics.

results then offer a potential explanation for the observation
of stacking faults in 〈110〉 compressed silicon at small scales
and low temperature.

ACKNOWLEDGMENTS

The classical MD and DFT-NEB calculations were per-
formed at the Mesocentre SPIN at the University of Poitiers.
We gratefully acknowledge financial support by the French
national research agency (ANR) within the project “BrIttle
to DUctile transition in silicon at Low dimensions” under
Grant Reference No. ANR-12-BS04-0003-01. We are mindful
of the work of Alessandro De Vita, who invented the LOTF
technique in 1996.

APPENDIX A: LOTF

The hybrid LOTF technique allows for carrying out
molecular dynamics using forces coming from an adjustable
classical potential form. The main idea of the technique is to
update the adjustable potential from the knowledge of ref-
erence quantum forces calculated in a quantum region (red
atoms in Fig. 8) and from classical reference forces else-
where (light cyan and gold atoms in Fig. 8). Practically, the
adjustable potential is obtained by tuning locally the param-
eters associated with pair and triplet interactions in order to
reproduce at best the reference forces in the fitting region.
The fitting region where the potential is updated contains
the quantum region plus a surrounding classical buffer re-
gion (light cyan atoms in Fig. 8) including all atoms within
a radius of Rfit = 10 Å from the quantum region. A fitting
region larger than the quantum region allows for a smooth
variation of the potential parameters from the active region
to the bulk. The buffer region also helps to reduce and spread
the fitting errors. The LOTF technique proceeds by periodic
updates of the adjustable potential, with the quantum and

FIG. 9. Zoomed view of the 1
3 〈112〉 partial dislocation core re-

laxed by DFT calculations. The numbers indicate the bond lengths
(in Å) between silicon atoms, represented by gold spheres.

fitting regions both dynamically evolving to follow the defect
propagation. The adjustable potential is updated through a
series of extrapolation/interpolation dynamical stretches sep-
arated by a periodic evaluation of the reference forces and
by a periodic force fitting (see [36,37,39] for more details).
The quantum and fitting regions are updated using simple
topological arguments, detailed below.

The quantum reference forces on each atom of the quantum
region are approximated by separated quantum calculations
done with the SIESTA [67] approach to density functional
theory (with the same technical details as in [39]). For each
atom in the quantum region we carve out a cluster of 6.6 Å
radius from the main system and terminate the cut bonds with
hydrogen atoms. After the SIESTA calculation of the cluster,
the force on the central atom is retained in the list of the
reference forces. Both the classical potential of reference as
well as the adjustable potential have a Stillinger-Weber form
[68] (the technical details are given in [39] and in its supple-
mentary material). We recall that out of the fitting region (gold
atoms in Fig. 8), the adjustable potential has fixed parameters
identical to the classical potential of reference. The adjustment
is restricted to the fitting region.

An example of an initial configuration is shown in
Fig. 8(a), with a defect already present inside the bulk. The
initial quantum region is a cylinder of 7.5 Å centered around
an atom in the vicinity of the defect. Starting from this initial
set up, the selection algorithm detects all the coordination
changes through the analysis of the neighbor lists of the
quantum atoms at the boundary of the quantum and buffer
region. Whenever a change is detected, all the neighbors of
the concerned quantum atoms are incorporated to the quan-
tum region. Following this algorithm, the quantum and buffer
regions grow when the defect propagates. As can be seen from
Figs. 8(b) and 8(c) this selection scheme nicely follows the de-
fect propagation and quickly releases the relative arbitrariness
of the initial quantum region.
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FIG. 10. (a) Dislocation core configuration for a 3% compres-
sion. Blue spheres represent silicon atoms bordering the stacking
fault, and green tubes show bonds used for dislocation position calcu-
lation. (b) The squares represent atomic y-coordinate differences �y
along the [111̄] axis as a function of atomic x-coordinate averages
along the [112] axis, for atoms bonded by green tubes in (a). The
dashed lines are guides for the eye. The colors correspond to three
different calculated NEB images, for a 3% compression. The full
lines show the result of the fit using the elasticity expression reported
in the legend of the figure.

APPENDIX B: DISLOCATION CORE GEOMETRY

In this section, we report the geometry of the 1
3 〈112〉 par-

tial dislocation core. It is obtained by relaxing with DFT an
initial configuration built from a LOTF-relaxed system at 0%
compression. The converged core structure is shown in Fig. 9.

The dislocation core structure includes two rings of re-
spectively seven and five Si atoms. All the atoms belonging
to these rings are fourfold coordinated. These characteristics
make this dislocation core apparently similar to the 60◦ per-
fect glide dislocation core [8], except that this one does not
allow for stacking fault formation and expansion. The bond

lengths in the core are also reported in Fig. 9. Except for
one, values range from 2.309 to 2.462 Å, indicating moderate
strains by comparison to the bulk DFT value of 2.368 Å.
Finally, note that the lack of coordination defects prevents
a possible reconstruction along the dislocation line. This as-
sertion was confirmed by additional DFT calculations using
initial configurations with a double period along the ŷ axis.

APPENDIX C: DETERMINATION
OF DISLOCATION POSITION

Final images relaxed using NEB-DFT calculations are
linearly spaced in configuration space (except the climbing
image associated to the saddle state). It obviously does not
mean that there is a constant distance between dislocation core
centers in successive configurations. This issue is documented
in the literature [53,55].

In principle the dislocation core position could be deter-
mined by fitting the calculated atomic displacements with the
strain field given by elasticity theory, but this approach is
difficult to implement for the small systems used in this work.
An alternative strategy relies on monitoring the variation of a
well chosen geometrical quantity [53]. For instance, a possible
indicator for the 1

3 〈112〉 dislocation core is the atomic coordi-
nate difference along the [111̄] axis between successive atoms
along [112] which form “long” bonds [colored in green in
Fig. 10(a)]. This quantity varies from a positive to a negative
value due to the formation of the stacking fault in the wake of
the dislocation [green arrows in Fig. 10(a)], and can then be
used to define a dislocation core center.

Figure 10(b) shows computed values for the initial, final,
and saddle-state images for a 3% compression strain. These
variations are fitted using the expression α arctan(x − xc) + β

derived from elasticity theory [57]. Here x is the center of the
bond along the x axis, and α, β, and xc are fitting parameters.
One can see in Fig. 10 that the above expression is maybe too
simple for a perfect fit. Nevertheless, assuming that the dislo-
cation center is at xc, reasonable dislocation core positions are
obtained. For instance, the distance traveled by the dislocation
core from the initial to the final NEB image is calculated to be
equal to 3.43 Å, which is slightly larger than the period along
[112] (

√
6a0/4 = 3.35 Å). The difference is further reduced if

one takes into account the Poisson expansion along [112] due
to the compression.
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