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Abstract

Large-scale first-principles calculations were performed to determine the stability and mobility properties of screw dislocations in
common silicon carbide polytypes (4H, 2H and 3C). There is a profound lack of knowledge regarding these dislocations, although
experimental observations show that they govern the plastic behavior of SiC at low temperature. Numerical simulations reported in this
paper indicate that these dislocations are characterized by a shuffle core, the associated Peierls stress of which ranges from 8.9 to 9.6 GPa
depending on the polytype. The only other stable dislocation core exhibits a reconstruction along the dislocation line, with a greater
stability, but is also found to be sessile. Polytypism has a weak influence on these results, especially regarding dislocation core energies
and Peierls stress. However, a qualitative difference is predicted between the cubic and the hexagonal systems regarding slip planes, with a
possible dislocation displacement along a prismatic plane on average, which would result from a zigzag motion of the screw dislocations

at the atomic scale.

© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Silicon carbide exhibits an impressive list of interesting
properties, many of which are already exploited in different
domains [1]. Some of these properties follow from the very
high stability of this compound. Hence, SiC is a ceramic
with high strength and large hardness, and exhibits excel-
lent behavior in extreme temperature environments (high
thermal shock resistance, low thermal expansion, high ther-
mal conductivity, low fracture toughness). Consequently, it
is then used in many applications, such as abrasive and cut-
ting tools, and automobile brakes. Besides these outstand-
ing mechanical properties, SiC is also highly resistant to
irradiation, which makes this material a first-choice candi-
date for various nuclear applications, such as a structural
material in future fusion reactors [2,3] and as a fuel
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cladding material in next-generation fission reactors. SiC
has also a low chemical reactivity with a good resistance
to corrosion, and thus has potential application in harsh
environments. Considering its electronic properties, SiC is
a semiconductor that can be doped, like silicon. It is also
characterized by a large gap, and a high value of the critical
electric field. SiC is therefore used in high-power high-
temperature devices. The combination of all these
electrical, mechanical and thermal properties makes SiC
an interesting material for biosensor applications [4].
Nevertheless, the use of SiC in certain applications is
limited by the difficulty of growing high-quality SiC crys-
tals, with a controlled quantity of residual defects such as
dislocations, although great improvements have been
achieved in recent years. These dislocations, for instance,
limit the potential of SiC in electronic and electromechan-
ical applications. Knowledge of the characteristics of dislo-
cations is therefore important for achieving a better control
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of their formation depending on the conditions. Further-
more, determining the properties of dislocations is essential
for improving our current understanding of the mechanical
behavior of silicon carbide (for a review, see e.g. Ref. [5]).
In the ductile regime, at high temperature, dislocations in
SiC are dissociated, like in silicon. These partial disloca-
tions have been the focus of several dedicated studies
[6-14]. At room temperature, it has been recently revealed
that dislocations are non-dissociated screw [15], and
require large stresses to move. The transition between these
two regimes is not sharp, with the coexistence of both dis-
sociated and non-dissociated dislocations over a large tem-
perature range [16,17]. Unlike partial dislocations, there
have been very few investigations of the properties of
non-dissociated screw dislocations [18,19], resulting in a
serious lack of information. For instance, the most stable
core for a non-dissociated screw dislocation in silicon,
which exhibits a double-period reconstruction along the
dislocation line [20,21], has not been considered as a possi-
ble option for SiC. Furthermore, the Peierls stress of the
non-dissociated screw dislocation is not known. With
recent experimental developments enabling the mechanical
properties of materials to be studied at a small scale, for
which very high yield stresses are observed [22], it becomes
increasingly important to achieve a complete determination
of dislocation properties.

An additional issue associated with SiC is polytypism,
with several competing phases. Among the 250 different
identified polytypes [1], the most common ones are the hex-
agonal 4H, 6H and the cubic 3C. The structures of these
phases essentially differ by the stacking of atomic layers
along the (0001) ((I111)) direction for hexagonal (cubic)
polytypes. An important feature of polytypes is that their
local atomic environments are similar up to the second-
neighbor shell. It is often assumed, therefore, that the prop-
erties of defects do not depend much on polytypism. This is
why, for instance, most theoretical investigations of point
and extended defects have been based on 3C-SiC, although
experimental data are usually obtained using hexagonal
polytypes. To our knowledge, this assumption has never
been verified in the case of dislocations.

This paper reports the results of investigations aiming at
addressing some of the issues described above. First-princi-
ples calculations have been performed to study the struc-
ture and stability of various possible core configurations
for a non-dissociated screw dislocation in 3C-, 2H- and
4H-SiC. The Peierls stress has been computed for the stable
configurations, and the differences between cubic and
hexagonal polytypes are discussed.

2. Models and simulation setup

The calculations were performed in the framework of
density functional theory [31,32], using the PWscf package
of the Quantum Espresso project [33]. In this work,
exchange and correlation contributions were obtained using
the now-standard generalized gradient approximation

functional proposed by Perdew, Burke and Ernzerhof
(GGA-PBE) [34]. Only contributions from valence elec-
trons were explicitly computed by employing ultrasoft
pseudopotentials [35]. A plane-wave energy cutoff of 30
Ry (160 Ry) for the wavefunctions (charge density) was
found to be a good compromise between accuracy and com-
putational resources.

The validity of this computational framework was
assessed by comparing calculated lattice parameters and
elastic constants (using small systems and large k-point
sets) to reference values (Table 1). An excellent agreement
is obtained for lattice parameters, with values slightly over-
estimated by at most 1%. Considering elastic constants,
single-crystal measurements are only available for 4H [25]
and 3C [26] polytypes, and our results compare extremely
well to these data.

Three-dimensional periodic boundary conditions were
employed here, since they are particularly appropriate to
plane-wave-based density functional theory calculations.
Oblique computational cells, as initially proposed by Big-
ger et al. [36], were selected, enabling the generation of a
quadrupolar array of dislocations while containing only
two dislocations with Burger vectors of opposite sign. This
framework was shown to be the most suited for modeling
screw dislocations, with minimal elastic interactions
[37,38]. Fig. 1 shows the relevant orientations [39]. For
hexagonal polytypes 2H and 4H, corresponding unitary
vectors are ¥ = -5 [1100], j = [0001] and z = 5 [1120], while

for cubic 3C, & = £[1121],7 = =[111] and z=[101].

Table 1

Lattice constant a (A), ¢/a ratio, and elasticity constants (GPa) computed
in this work for 2H, 4H and 3C-SiC, and compared to experimental [23—
27] and DFT data [28-30].

This work [23] [24] (28]
2H
a 3.0885 3.079 3.0763 3.05
c/a 1.6460 1.641 1.641 1.64
Cn 499 541
Cpy 93 117
Ci3 52 61
Cs3 533 586
Cy 153 162
This work [25] [24] [29]
4H
a 3.0903 3.073 3.087
c/a 3.2936 3.271 3.254
Ch 498 501 534
Ci 91 111 96
Ci3 52 52 50
Cs3 535 553 574
Cyy 159 163 171
This work [24] [26] [27] [30]
3C
a 4.3804 4.3596 4.344
Cn 382 395 390 390
Cin 128 123 142 134
Cy 239 236 256 253
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Wurtzite / 2H-SiC

A [0001]

[1120] [1100]

[101] [121]

Fig. 1. Ball-and-stick representation of the 2H (wurtzite), 4H and 3C
(zinc-blende) SiC structures considered in this work, projected along
pertinent orientations for dislocations, [1120] for hexagonal and [101]
cubic polytypes. White crosses show possible locations for screw disloca-
tion cores, while dashed red lines indicate “shuffle” (S) and “glide” (G)
basal and {111} planes for hexagonal and cubic systems, respectively
(color for online version). (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this article.)

The screw dislocation line is then oriented along z. In the
case of 2H-SiC, the computational cell vectors are
ii = 8v3ax,t = 4V3ax +4cy+a/2z and  W=2a:z
(considering a and ¢ as provided by Table 1), thus includ-
ing 512 atoms. Equivalent cells are obtained for 4H-SiC
using cell vectors # = 8v/3ax,¥=43ax+ 2y +a/2z,
and W =2q2 Finally, in the case of 3C-SiC, cell
il = 4/6ak, v = 2v/6ax + 3\/3ay + v2a/4z

vectors are

and W = v/2az, encompassing 576 atoms. Note that the
small z component of the ¥ vector is needed in the case of
screw dislocations, to prevent lattice mismatch at the cell
boundaries [37].

Because of their long-range elastic field, the two disloca-
tions contained in the computational cell interact with each
other, as well as with replicated dislocations because of
periodic boundary conditions. As long as these interactions
can be fully described by the linear elasticity theory, it is
quite easy to extract properties associated with a single dis-
location. In this work, cell dimensions were large compared
to previous similar calculations, allowing for a separation
of at least 20.33 A between two dislocations. This is cer-
tainly big enough to employ the linear elasticity theory
framework. The large dimensions along X and y also sug-
gest that the Brillouin zone sampling can be accurately
achieved by using two k-points distributed along z [40].

The determination of Peierls stresses for all stable cores
was done by first applying an increasing shear strain on the
computational cell. The critical shear strain was then calcu-
lated as the threshold value for which the dislocation is dis-
placed from one Peierls valley to the next. Close to this
value, strain increments as low as 0.1% were employed
for an accurate determination. The Peierls stress was finally
obtained by multiplying the critical shear strain by the cor-
responding elastic modulus. The latter can be computed
from the computed elastic constants reported in Table 1.
However, this is based on the assumption that the elastic
response of the system to the shear is linear, which might
be erroneous for large strain values. Another method is
to apply an equivalent shear strain on a pristine bulk sys-
tem of similar dimension, and compute the excess energy.
The elastic modulus C can then be determined by matching
this quantity with the elastic energy stored into the system
%Csz. For Peierls stress determinations of single-period dis-
location cores, the previously described computational cell
was halved along the dislocation line to lower the compu-
tational cost. However, an almost equivalent accuracy
was achieved by considering four special k-points along
the Z axis.

3. Structure and stability of possible dislocation cores

Fig. 1 shows the three SiC polytypes investigated in this
study, oriented along relevant directions for dislocation
modeling. Depending on the position of the dislocation line
in (1120) (hexagonal) or (101) (cubic) planes, different core
structures can be obtained by relaxing initial atomic
displacements yielded by anisotropic elasticity theory.
These positions, labeled as different letters A, B and C in
Fig. 1, are the center of (1) an hexagon and (2) a “long”
or (3) a “short” bond (as seen when projected on the planes
mentioned above). Although it is possible to initially put
the dislocation center in other locations, the latter moves
to A or C during structural relaxation with first-principles
or empirical force fields in any cases. This point appears to
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be valid for zinc-blende and wurtzite materials investigated
in earlier studies [18,41,42,19,43]. Here, in addition, one
has to consider possible differences due to the hexagonal
or cubic local character of the structure. For instance, there
are two inequivalent A, and A, positions for 4H-SiC
(Fig. 1).

The A core has been suggested as a possible non-disso-
ciated screw dislocation structure in the pioneering work of
Hornstra [44] since the separations between the dislocation
center and first-neighbor atoms are maximized, thus mini-
mizing the lattice distortions associated with the defect. In
this configuration, the dislocation is located in the “shuffle”
set of {111} (cubic) or basal (hexagonal) layers [45]. The A
core has been found to be stable in various zinc-blende [46—
48] and wurtzite [43] materials. In this work, the stability of
A; and A, dislocation cores was confirmed for 2H-, 4H-
and 3C-SiC.

An example of a relaxed A, structure is shown in Fig. 2.
The analysis of the atomic displacements reveals an
increase of 2—6% of the length of “long” bonds in the hexa-
gon encircling the dislocation center. These bonds are also
characterized by a tilt of 0.6-0.7 A along z (the dislocation
line direction) due to the dislocation. For hexagonal
“short” bonds, the situation is more complex. In fact, the
presence of the dislocation breaks the symmetry, leading
to alternating longer (+10%) and shorter (—5%) bonds.
The former are also characterized by an increase of the ori-
ginal Z tilt by about 0.18 A, while a decrease of similar
extent is obtained for the latter. A careful examination of
A, (in 3C and 4H) and A, (in 4H and 2H) configurations
show that the polytype has negligible influence on the
geometries of dislocation cores.

In the reference textbook by Hirth and Lothe [39] the B
core is reported as an alternative configuration. However,
all previous first-principles calculations in silicon unambigu-
ously showed that it is not stable [42,19]. Celli had early
hinted at this instability on the basis of a symmetry
argument [49], although it is not clear whether the latter is

LS

C2 core

Ac core

Fig. 2. Ball-and-stick representation of the two stable cores, A, (left) and
C, (right), for a non-dissociated screw dislocation in 3C-SiC. The red lines
mark the position of the dislocation line ([111] orientation). (For
interpretation of the references to colour in this figure caption, the reader
is referred to the web version of this article.)

still relevant in the case of a binary compound such as SiC.
In this study, three B cores were tested (B, for 3C-SiC, By,
for 2H-SiC, and B/, for 4H-SiC). In all cases, they were
found to be unstable and relaxing to the A configuration.
This emphasizes an issue related to several empirical poten-
tials, which are not able to reproduce this result [43,50,18].

The last case corresponds to the dislocation center in the
C position, in the “glide” set of {111} (cubic) or basal (hex-
agonal) layers [45]. Previous investigations have shown that
first-principles or interatomic potential relaxation starting
from elasticity theory positions lead to the formation of a
sp” hybridized dislocation core for 3C-SiC [18,19], called
the C core here. However, in the present study, it is found
that a sp> hybridized C, core is recovered during relaxation
for all polytypes (C, for 3C, C, for 2H, and C,/, for 4H),
through the formation of Si-Si and C-C bonds along the
dislocation line (Fig. 2). This configuration has been iden-
tified as the most stable one in silicon [20]. Starting from a
sp® core structure initially relaxed using interatomic poten-
tials yields the same outcome. Then it appears that a simple
period C core is not stable in SiC. The results of previous
calculations can be understood if one considers that the
computation cells employed in these works were restricted
to a single layer along z, artificially preventing the C, core
formation. Finally, an intermediate configuration C; was
tested for 2H and 3C, in which these C—C bonds are ini-
tially present but not the Si-Si bonds. In both cases, the
fully reconstructed C, core was recovered during relaxa-
tion. As mentioned above, the main structural feature of
the C, dislocation core is the formation of Si-Si and C-C
bonds oriented along the dislocation line. Silicon bonds
have a bond length of 2.49-2.52 A depending on the poly-
type, i.e. an increase of about 7% compared to bulk silicon.
Carbon bonds are 5% larger than in diamond, with lengths
of 1.62-1.64 A. As for the A dislocation core, a potential
influence of the polytype on the C, core geometry is too
small to be estimated.

The computed energy differences between the only two
stable core structures, A and C,, clearly show that C, is

Table 2

Energy differences (in eV 10\’1) relative to the most stable one (C, for all
polytypes), dislocation core radii (in A) and energies (in eV A’l) for
different screw dislocation configurations (see Fig. | or text for configu-
ration labels). Arrows indicate unstable configurations while blank fields
correspond to non-tested cases.The dislocation core energies are deter-
mined by assuming that r. is equal to the Burgers vector (see text for
explanations).

2H 4H 3C
Excess energy differences (eV A'l)
A 0.148 0.146 0.152
B — A — A — A
C — Cz — Cz — C2
CE — C2 — Cz
C, 0 0 0
re (A)/ Ec (eVA™
A 0.78 / 1.15 0.82/1.13 0.73/1.20
C, 0.93 / 1.00 0.98 /0.98 0.87 / 1.05
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the most stable configuration for all polytypes (Table 2).
The energy differences between C, and A dislocation cores
range from 0.146 to 0.152 ¢V A~'. Overall, the situation is
quite similar to silicon, for which C; is more stable than A,
with an energy difference in the range 0.14-0.16 eV A~!
[20,51]. Core radii and energies are also reported in Table 2.
The former quantity is here computed by assuming that all
the excess energy in the computational cell due to disloca-
tions is equal to the anisotropic elastic energy [39]. Note
that interactions between dislocations, both in the cell
and due to periodic boundary conditions, have been taken
into account to determine the core radius of a single dislo-
cation. Following another definition of the core radius,
now equal to the Burgers vector, the computed dislocation
core energies are also reported in Table 2. Comparing the
energy-related quantities for the different polytypes, it
clearly appears that the differences are very small, and com-
parable to the level of accuracy of the calculations. There-
fore, polytypism has no or negligible influence on the
stability properties of dislocations.

4. Peierls stress calculations

The threshold shear strain needed to displace a screw
dislocation in the basal plane was first determined for the
4H-SiC polytype. This was done by applying a ¢., deforma-
tion to the computational cell, and monitoring the evolu-
tion of the structure during relaxation. This method is
the simplest one and allows for an accurate determination
in agreement with more sophisticated approaches [52,53].
Considering initially the most stable C, core, it was found
that applying a 10% shear strain did not lead to dislocation
displacement. Adding a further 4% did not change the sit-
uation. At this point, it is reasonable to consider that 14%
is a value large enough to qualify the C, as sessile. This
point was corroborated by additional interatomic potential
calculations, not described here, which showed that for lar-
ger shear strains, the C, is transforming to a moving A core
plus a remaining coordination defect. This situation is
comparable to the silicon one, for which it is currently
thought that only shuffle dislocations are mobile in the
low-temperature/high-stress regime, although they are less
stable than glide dislocations [54].

Considering now the A, configuration, it was found that
the structure remains fixed when applying an initial strain
of 6.0%. However, at 6.1%, the dislocation becomes unsta-
ble and is displaced in the next Peierls valley, here the next
hexagonal center, in the basal plane and the x direction.
The most important displacements during the dislocation
migration are obtained for the two rows of atoms between
two successive Peierls valleys, the same ones defining the
“long” bonds described in the previous section. The sign
of the height difference along Z between the two atomic
rows is reversed during the migration, the middle structure
being equivalent to a B dislocation core. This mechanism

has already been described in detail in the literature
[42,52]. To determine the stress o, corresponding to the
shear strain ¢.,, the appropriate elastic modulus has to be
calculated. For these orientations it should be equal to
C4s = 159 GPa. Using the second method, with the sheared
bulk, C =157 GPa is obtained, in very good agreement
with Cy. This yields a Peierls stress of 9.5 GPa for the A,
dislocation core in the basal plane of 4H-SiC. For the A,
core, it was found that the dislocation is displaced for a
slightly lower value of 6.0%, corresponding to a Peierls
stress of 9.4 GPa, the migration mechanism being rigor-
ously the same as for the A, configuration. It is difficult
to estimate whether the small 0.2 GPa difference has a real
meaning or is simply indicative of the accuracy of the
calculations.

The same procedure was performed for the other 2H and
3C polytypes. Only A configurations were considered, since
tests have shown that the C, dislocation core is also sessile.
For 2H, the calculated threshold shear strain is 6.4% for the
A, structure, the only relevant configuration. The corre-
sponding modulus computed using a 6.4% sheared pristine
bulk is 151 GPa, in excellent agreement with the bulk com-
puted Cyy = 153 GPa (Table 1). Then the computed Peierls
stress of the A, dislocation core is 9.6 GPa, quite close to
the value obtained for 4H-SiC. In the case of 3C-SiC, the
threshold shear strain was determined equal to 5.4%. The
sheared bulk calculation yields an associated modulus
C =165 GPa. Again, this is in excellent agreement
with the wvalue computed using elastic constants,
C :%(Cn + Cy44 — C1p) = 164 GPa. The Peierls stress for
the A, configuration in 3C-SiC is then 8.9 GPa, thus slightly
lower than in hexagonal polytypes. Thus, it is tempting to
say that the Peierls stress of non-dissociated screw disloca-
tion increases as a function of the hexagonality of the SiC
polytypes. Nevertheless, although the calculated stress
range (0.7 GPa) is not negligible, it remains relatively low
(at most 8%). It is also interesting to compare the 3C-SiC
results with Peierls stress data computed for silicon. First-
principles investigations suggested a value of 3.6-4 GPa
for the Peierls stress of the screw dislocation in the A config-
uration [55,20], i.e. 4% of the bulk modulus (100 GPa). In
the case of 3C-SiC, the computed value is also exactly 4%
of the bulk modulus (220 GPa). Although this may be a
coincidence, this suggests a possible scaling effect.

Not that due to the use of periodic boundary conditions,
what is considered in calculations is an infinite arrange-
ment of interacting dislocations. When the applied strain
is close to the threshold value, the two dislocations in the
computational cell can be displaced towards each other,
thus changing the interactions. This would lead to an extra
force on dislocations, which could artificially increase or
decrease the determined Peierls stress. Using elasticity the-
ory, this contribution can be estimated by calculating the
interaction energy per unit length along z as a function of
the displacement x of the dislocations:
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KB (g = 20"+ ()’
E=—"" 1 1
- m+n is odd

Here, we considered only interactions between disloca-
tions of opposite Burgers vectors, as the only one depend-
ing on Xx. Also we assumed that the dislocation
displacement is along the x axis. In this equation, d and &
are the separations between consecutive dislocations along
x and p respectively, and r( the core radius. K is the energy
factor, which is /CyyCe for hexagonal systems and Cyy for
the cubic one [39]. The force on dislocations is obtained by
taking the derivative with respect to x, and the correspond-
ing stress is:

Kb N — nd — 2x
n A~ A (nd —2x)* + (mh)’

m+n is odd

Ao = (2)

This stress contribution has been estimated for the
computational setup used for the screw dislocation in
4H-SiC. The only unknown quantity is the dislocation dis-
placement x at the critical shear strain, which is likely to be
small. An upper bound is dy/4,d, being the distance
between two Peierls valleys along x, since it is approxi-
mately the inflection point in the Peierls potential [52].
Fig. 4 shows the variation of Ac for different x values as
a function of the size of the cell. The latter is changed by
multiplying d and / by a scaling factor, a value of 1.0 cor-
responding to the cell dimensions used for the first-princi-
ples calculations in this work. As expected, the additional
stress is minimal for large cell dimensions or for small x
values. For the setup used in this work, Ac is positive, thus
leading to an underestimation of the calculated
Peierls stress. However, the maximum contribution (for
x ~dy/4) is only 0.09 GPa, which is lower than the stress
increment used in the first-principles calculations.

5. Discussion

Microscopy observations revealed that dislocations in
the low-temperature/high-stress regime are non-dissociated
in SiC [15]. The investigation of core stability reported in
this paper indicates that there are only two possible candi-
dates for a non-dissociated screw dislocation: the A core in
“shuffle” planes and the C, core in “glide” planes.
Although C, is the lowest-energy configuration, Peierls
stress calculations suggested that this core is sessile. These
elements indicate that the observed non-dissociated screw
dislocations have an A core and are “shuffle” dislocations,
like in silicon [54].

As mentioned in the Introduction, there are no available
measurements of the Peierls stress in SiC. Nonetheless, a
recent investigation of the mechanical properties of
3C-SiC micropillars revealed that ductile deformation by
dislocation nucleation could be obtained at room tempera-
ture for the lowest diameters, with a corresponding
resolved shear stress ranging from 4.9 to 7.3 GPa [56].
There are no further details regarding the nature of the

dislocations, but they are likely to be non-dissociated.
The measured stresses are of the same order of magnitude
as the value of 8.9 GPa computed for 3C-SiC in this work.
A likely explanation for the difference is the effect of ther-
mal activation since micropillar deformation was done at
room temperature. This allows for a significant reduction
of the stress required to displace the dislocation [57].
Another assumption is a possible influence of the polycrys-
talline nature of the micropillars. Finally, one cannot
exclude that the first-principles value is an overestimation
of the true Peierls stress due to quantum effects, as recently
revealed in metals [58].

Finally, the calculations reported here are useful for dis-
cussing cross-slip mechanisms. Since screw dislocations are
non-dissociated at low temperature, cross-slip is possible in
any planes containing the dislocation line according to con-
tinuum elasticity theory. Obviously, one should also con-
sider the crystalline structure of the material. In the case
of the cubic polytype, there are two equivalent {111}
planes, (111) and (111), in which the shuffle A, screw dis-
location could move along directions [121] and [121]
respectively (Fig. 3). Peierls stresses for these two slip sys-
tems are obviously equal by symmetry. Another slip system
could be [101](010), corresponding to the successive trans-
formation of the screw dislocation between A and C config-
urations. This case was examined for silicon, leading to the
conclusion that such a process is not occurring under the
sole action of stress [55]. In fact, the A—C transformation
requires thermal activation because of a large energy bar-
rier, with a low dependence on the applied stress [59]. Fur-
thermore, once in the C, configuration, a dislocation would
stop for the same reasons explained above. This slip system
is then forbidden for the screw dislocation (marked with
the || symbol in Fig. 3). Therefore, in the cubic polytype,
the screw dislocation could slip (and cross-slip) in two dif-
ferent planes, making an angle o.

Now the comparison with polytypes 2H and 4H
becomes interesting, since hexagonal systems miss the sym-
metry reported above. Because the atomic arrangements of
cubic and hexagonal polytypes are locally similar, one
might expect that a screw dislocation could also glide in
the plane making an angle o with the basal plane in the case
of 2H and 4H, albeit over a distance of the same order as
one hexagon. In such a process, the screw dislocation
would transform between A, and A. configurations, pass-
ing through intermediate B structures. The slip direction
would change when the screw dislocation is located in an
“hexagonal” hexagon, since we assume that the transfor-
mation from A to C geometries is not possible. The pro-
posed mechanism is depicted in Fig. 3. The slip system
seen at a larger scale would be the prismatic plane (1100)
and an average [0001] displacement direction, resulting
from the zigzag motion of the dislocation. This scenario
has been tested by determining the associated Peierls stress
for the 4H polytype. An increasing ¢, deformation was
applied, thus shearing the computational cell along the
(1100) plane, with either an initial A, or A, core
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Wurtzite / 2H-SiC

A [0001]

>
[1120] [1700]

A 1111]
-

[101] [121]

Fig. 3. Similar representation to Fig. 1, showing directions for the
movement of a non-dissociated shuffle screw dislocation as well as
corresponding computed Peierls stresses in GPa (in red for online version).
Dislocations displacement along directions marked with || symbols are
forbidden. o = arccos(1/3) is the supplementary of the angle between two
successive Si-C bonds. (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this article.)

dislocation. In both cases, the dislocation was observed to
do a single A—B—A displacement for a shear strain value
of 5.3%. Depending on the starting configuration, the final
geometry was either A, or A., after displacement in the
direction making an angle « with the normal to the basal
plane. Applying such a shear strain on a pristine bulk sys-
tem allows for determining an elastic modulus of 190 GPa,
which is slightly lower than the value computed using elas-
tic constants (Cgs = 203 GPa). The Peierls stress required
to displace the screw dislocation with the zigzag mecha-
nism, i.e. with an average slip along the [0001] direction,

e
i
o

e
o

o
.

PBC stress correction (GPa)
o
o

o
o
a

0.4 0.6 0.8 1 1.2 1.4
Cell scaling factor

Fig. 4. Stress contribution associated with periodic boundary conditions
as a function of the computational cell size (d and /h scaled, with h/d
constant), for different dislocation displacements x (in unit of d).

is then 190 x 0.053 ~ 10.1 GPa. This corresponds to a
resolved shear stress of 10.1 x cos(90° — «) = 9.5 GPa for
the A—B—A mechanism at the scale of an hexagon, equal
to the value of 9.4-9.5 GPa previously computed for the
[1100](0001) slip system. With such an excellent agreement,
it is straightforward to determine a Peierls stress of
10.2 GPa for the same mechanism in the case of 2H-SiC,
using the data calculated for the A, core dislocation dis-
placement in the basal plane. The Peierls stresses for dislo-
cation displacement in the prismatic plane are then 6%
higher than in the basal plane in 2H and 4H polytypes.
This is in clear contrast with the cubic polytype for which
cross-slip between (111) and (111) planes can occur for
the same stress. It is not certain that such a small stress dif-
ference could be evidenced experimentally. However, one
may hope that future observations could show cross-slip
events with angles between slip planes which would be dif-
ferent between 3C on the one side and 2H and 4H on the
other side. This would confirm the zigzag motion of the
screw dislocation for an average displacement along the
prismatic plane, predicted in this work for hexagonal

polytypes.
6. Summary

The stability and mobility of non-dissociated screw dis-
locations in 4H, 2H and 3C polytypes of SiC have been
studied using first-principles calculations. In this material,
it has in fact been shown that plasticity properties at low
temperature greatly depend on these extended defects, for
which very little is known. These investigations lead to
the following conclusions:

e Only two dislocation cores are stable. One is centered in
the middle of an hexagon (Fig. 1), in “shuffle” planes
(A). The second one, C,, is characterized by a recon-
struction along the dislocation line, and is located in
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“glide” planes. It is also energetically more stable than
the former one. The situation is similar for the three
polytypes, and also to what is known for silicon.

e Peierls stress calculations indicate that the most stable
C, dislocation core is sessile, while the Peierls stress
related to the A core is in the range 8.9-9.6 GPa,
depending on the polytype. Then the A core is predicted
to be the one observed in microscopy experiments.

e There is overall a negligible influence of polytypism on
the quantities characterizing the stability and mobility
of a non-dissociated screw dislocation. However, it is pre-
dicted that slip planes will be different in cubic and hexag-
onal polytypes, due to the differences in crystal symmetry.
Possible slip planes in 3C-SiC are {111} planes, while in
hexagonal systems, basal and prismatic planes are
involved. In the latter case, the prismatic displacement
would result from a zigzag motion of the dislocation.
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