
A new parametrization of the Stillinger–Weber potential for an improved description of defects

and plasticity of silicon

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 J. Phys.: Condens. Matter 25 055801

(http://iopscience.iop.org/0953-8984/25/5/055801)

Download details:

IP Address: 194.167.47.253

The article was downloaded on 17/01/2013 at 08:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/25/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 25 (2013) 055801 (12pp) doi:10.1088/0953-8984/25/5/055801

A new parametrization of the
Stillinger–Weber potential for an
improved description of defects and
plasticity of silicon

L Pizzagalli1, J Godet1, J Guénolé1, S Brochard1, E Holmstrom2,3,
K Nordlund3 and T Albaret4

1 Department of Physics and Mechanics of Materials, Institut P’, CNRS - Université de Poitiers UPR
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Abstract
A new parametrization of the widely used Stillinger–Weber potential is proposed for silicon,
allowing for an improved modelling of defects and plasticity-related properties. The
performance of the new potential is compared to the original version, as well as to another
parametrization (Vink et al 2001 J. Non-Cryst. Solids, 282 248), in the case of several
situations: point defects and dislocation core stability, threshold displacement energies, bulk
shear, generalized stacking fault energy surfaces, fracture, melting temperature, amorphous
structure, and crystalline phase stability. A significant improvement is obtained in the case of
dislocation cores, bulk behaviour under high shear stress, the amorphous structure, and
computation of threshold displacement energies, while most of the features of the original
version (elastic constants, point defects) are retained. However, despite a slight improvement,
a complex process like fracture remains difficult to model.

(Some figures may appear in colour only in the online journal)

1. Introduction

Atomistic numerical simulations in materials science can
be roughly classified into two categories, depending on
whether the interactions between atoms are obtained by taking
into account the underlying electronic structure (quantum
mechanics methods) or are instead computed from analytical
or numerical empirical schemes as with classical potentials.
The first option is fundamentally better, since it allows for
usually accurate and trustworthy results, but it is also the
more demanding in terms of computational resources, which
translates into drastic limitations regarding the size of the

considered systems. For instance, standard density functional
theory calculations are typically restricted to several hundreds
of atoms. Also, simulations of system evolution can hardly
be performed for durations much longer than a few tens
of picoseconds. The second option is then attractive, since
the cost of empirical interatomic potential calculations is
typically much smaller, which allows for long simulations or
systems including millions of atoms. Nevertheless, in order
to get high quality results, potentials that are accurate and
especially transferable, i.e. able to describe configurations and
mechanisms not included in the potential fitting database, are
required.
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Such a goal is difficult to reach in the case of covalent
materials like silicon. In fact, the directional character of
covalent bonds as well as their strong dependence on the
atomic environment make a simple pair potential modelling a
total failure. Several approaches have been proposed to tackle
this issue. Here we recall only the resulting potentials which
have been intensively used in previous works. In a pioneering
study, Keating proposed an interatomic potential built on
elasticity considerations, allowing for a correct description
of weakly strained silicon crystals [1]. Two decades later,
Stillinger and Weber (SW) developed another including
two-body and three-body contributions for modelling solid
and liquid silicon [2]. A bond-order potential was then
proposed by Tersoff, especially aiming at an improved
description of crystalline defects [3]. At the same time,
the embedded atom model (EAM), highly successful for
metals, was modified in order to take into account the strong
angular dependence of covalent bonds [4], with different
possible parametrizations [5–7]. A decade later, Bazant and
co-workers developed the environment-dependent interatomic
potential (EDIP) combining strengths of the Tersoff and
SW approaches [8]. Due to the importance of silicon in
applications and as a model for covalent materials, there are
many other available potentials, but the few examples listed
above are surely among the most used nowadays. Several
investigations have been made for determining the pros and
cons of some of these potentials [9–12], from which it can be
concluded that none of them is clearly better than the others
in all respects. Note that the recent ReaxFF method could
possibly be a superior semi-empirical approach for describing
silicon [13], but to our knowledge it has not been extensively
tested, especially regarding defects and plasticity.

Although it was proposed almost 30 years ago, the
SW potential is still in wide use nowadays. This unceasing
interest is both the cause and the consequence of its success.
In fact, this potential has been employed for investigating
many different situations involving silicon, and a large
database is available. The SW potential has then become a
reference interatomic potential. Another explanation comes
from its simple functional form, involving a small number
of parameters compared to newer potentials. This has been
suggested as a possible cause for its smooth behaviour in
the case of highly strained silicon [14], since complicated
functionals are more prone to spurious behaviours for
configurations far from equilibrium. Also, this leads to
very fast force evaluations compared to more complicated
potentials. Finally, despite its simplicity and the fact that it has
been originally designed for describing the transition between
solid and liquid silicon [2], it tends to perform successfully in
many situations. Nevertheless, several situations are not well
described with the SW potential. In particular, known failures
regarding defects and mechanical properties are the modelling
of dislocation core structure [15, 16], the brittle-ductile
transition in nanowires [17, 18], and the propagation of
cracks. Amorphous silicon models generated with the SW
potential tend to be too dense, with an incorrect concentration
of overcoordinated atoms [19, 20]. There have been few
attempts to improve the behaviour of the SW potential in

specific situations. For instance, Holland and Marder found
that a substantial strengthening of the three-body interactions
was required to obtain a crack propagation in qualitative
agreement with experiments [21]. The same procedure has
also been shown to lead to a much better description of
structural properties of amorphous silicon [20, 22]. However,
the modification of only one or two parameters also degrades
the potential ability to describe other silicon characteristics,
as will be shown in the following. Only by a refitting
of all parameters could one hope to improve the potential
transferability while retaining the good properties of the
original parameters set. To our knowledge, this has been done
only once by Jian and co-workers [23], however with the
introduction of an additional parameter. A better description
of phonon dispersion is obtained with this potential, but it is
likely that the strong weakening of three-body interactions
does not allow for a good description of highly distorted
configurations such as those with defects.

In this work, we aimed at improving the ability of the
SW potential for describing defects and plastic properties of
silicon, while retaining as far as possible the transferability
that made the success of the original version. Hence, a new
parametrization of the SW potential is proposed that corrects
several shortcomings. We tested this new version in several
possible situations, together with the one suggested by Vink
and co-workers [22] (called VBWM thereafter), which is
also an interesting alternative. In the following sections, we
discuss the structure of the original SW potential, and describe
the new set of parameters. Then the results obtained for
point defects, threshold displacement energies, dislocations,
behaviour under shear stress, generalized stacking fault
energy surfaces, fracture, phase stability, melting temperature,
and amorphous structure are successively described.

2. The SW potential

2.1. Analysis

With the SW potential [2], the total energy E is obtained as a
combination of two-body and three-body interactions:

E =
∑
i<j

82(i, j)+
∑

i6=j
j<k

83(i, j, k) (1)

=

∑
i<j

εφ2(rij)+
∑
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The choice of the two-body function is not really justified
in the original paper from Stillinger and Weber, only that its
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Table 1. Parameters for the original SW potential [2], the VBWM potential [22], and the new set SWm proposed in this work.

ε (eV) σ (Å) a λ γ A B p q

SW 2.1683 2.0951 1.80 21.0 1.20 7.049 556 277 0.602 224 5584 4.0 0.0
VBWM 1.64 833 2.0951 1.80 31.5 1.20 7.049 556 277 0.602 224 5584 4.0 0.0
SWm 1.041 90 2.128 117 1.80 31.0 1.10 19.0 0.65 3.5 0.5

Table 2. Cohesive energy, lattice constant, and elastic constants for the cubic diamond silicon, from experiments [25, 26], DFT-LDA [15],
and for the three considered potentials.

E0 (eV/atom) a0 (Å) B (GPa) C11 (GPa) C12 (GPa) C44 (GPa)

Refs. [25, 26] −4.63 5.43 99 166 64 80
DFT-LDA [15] 5.406 99 164 66 78
SW −4.337 5.431 100 151 75 56
VBWM −3.297 5.431 77 133 48 57
SWm −4.630 5.431 105 156 80 58

derivatives exhibit no discontinuities at the cutoff a [2]. The
latter is also true for the three-body function, which is built
in such a way that it is positive and vanishes for a perfect
cubic diamond crystal when bond angles are equal to the
tetrahedral angle defined as cos θ = 1/3. ε and σ are energy
and distance scaling parameters, respectively, which set the
cohesive energy and lattice constant of the cubic diamond
silicon. The other remaining parameters, A,B, p, q, λ and γ ,
allow us to tune two-body and three-body interactions as a
function of interatomic distances and angles.

Since the three-body interactions cancel for the perfect
crystal, properties conserving the cubic diamond lattice do
not depend on the value of λ and γ . This is the case for
the bulk modulus, in addition to the cohesive energy and the
lattice constant. This also allows for increasing or decreasing
the strength of three-body interactions (typically by changing
λ) with respect to two-body interactions, without altering the
cubic diamond ground state. This property has been exploited
to improve the fracture behaviour [21], and to investigate how
the strength of the three-body interactions is related to the
plasticity of amorphous silicon [20]. Overall, it seems that
increasing λ leads to better results regarding several properties
related to fracture [21] and amorphous systems [19, 20].
However, the excess energy of any system with respect to the
perfect cubic diamond crystal, such as the formation energy
of defects, is linearly proportional to λ. This has obvious
consequences, for instance increasing λ from 21 to 42 (all
other parameters being kept constant), as in the work of
Holland and Marder [21], implies that all excess energies will
be twice the original SW potential.

2.2. New set of parameters

The original set of parameters is reported in table 1, along with
the parameters set from Vink and co-workers [22] and the one
proposed in this work (SWm). The latter has been obtained
after a thorough analysis of the influence of λ on many
properties such as the stability of point and extended defects,
and an analysis of the previous investigations mentioned
above [21, 22]. We found that λ should be greater than or
equal to 31 in order to obtain the correct energy ordering of

dislocation configurations [15, 16, 24]. At the same time, λ
should be kept as low as possible to minimize the increase
of excess energies. Then we set λ = 31 before optimization.
We also kept the dimensionless cutoff parameter a equal to
its original value. The remaining parameters for SWm are
obtained using a least-square fitting algorithm and a database
including elastic constants and the formation energies of
silicon interstitials and a monovacancy. We also determined
the scaling parameters ε and σ in order to recover the
experimental cohesive energy and lattice constant of cubic
diamond silicon. We first tried to keep the original exponent
values p = 4 and q = 0, which are computationally very
convenient. Nevertheless, it was not possible to obtain a good
agreement in that case, and this constraint was lifted. Finally,
the best results were obtained for the set of parameters SWm
reported in table 1.

In table 2, the results of basic properties computed with
the original SW, SWm and VBWM potentials are shown.
The experimental lattice constant is obtained for all sets.
Regarding the cohesive energy for the original SW potential,
it is slightly higher than the reference data, since ε has been
fitted to reproduce the melting temperature of the crystal
in that case [2]. An even higher value is obtained with the
VBWM set, due to the low value of ε. Instead, our potential
yields the correct cohesive energy by construction. Elastic
constants are obtained in fair agreement with experiments for
the SW and SWm potentials, although C12 is too high and C44
is too low. In the case of the VBWM potential, the computed
elastic constants are all quite low, leading to a silicon crystal
softer than expected.

3. Point defects

3.1. Stability

The three potentials have then been tested for reproducing
the formation energies of the following point defects: mono-
and di-vacancy, and the most stable configurations of the
self-interstitial. For the reference values, we considered
experiments or state of the art calculations when the former
are nonavailable. The results are reported in table 3. In the
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Table 3. Formation energies (eV) of different point defects: monovacancy V, di-vacancy V2, four-fold coordinated defect or bond defect
FFCD/BD, and different interstitial configurations, tetrahedral T, hexagonal H, and I〈110〉 split.

V V2 FFCD/BD T H I〈110〉

Ref. 3.6 [27] 5.01 [28] 2.7 ± 0.3 [29–31] 5.05 [32] 5.13 [32] 4.94 [32]
SW 2.66 4.60 2.94 4.95 6.55 4.43
VBWM 3.19 4.98 3.36 7.96 8.52 6.51
SWm 3.27 5.19 3.41 6.76 7.60 5.92

Table 4. Threshold displacement energies (eV): average values for the creation of Frenkel pairs (Ed(FP)), and for the creation of either
Frenkel pairs or bond defects (Ed(FP/BD)), as well as values along two high symmetry orientations (there are two values for 〈111〉 because
the two possible directions are not equivalent in the cubic diamond structure).

Ed(FP) Ed(FP/BD) 〈100〉 〈111〉(A) 〈111〉(B)

Ref. [31] 36.0 ± 2.0 24.0 ± 2.0 20.5 ± 1.5 14.5 ± 1.5 12.5 ± 1.5
SW 30.3 ± 0.3 20.6 ± 0.3 23.5 ± 0.5 20.5 ± 0.5 17.5 ± 0.5
VBWM 41.0 ± 0.4 27.4 ± 0.2 23.5 ± 0.5 26.5 ± 0.5 20.5 ± 0.5
SWm 37.7 ± 0.4 24.5 ± 0.2 22.5 ± 0.5 22.5 ± 0.5 17.5 ± 0.5

case of vacancies, the best agreement is obtained for the
SWm and VBWM potentials, while the original SW potential
yields too low formation energies. For self-interstitials,
I〈110〉 is found as the most stable configuration by all
potentials, in agreement with recent quantum Monte Carlo
(QMC) calculations [32]. However, in these calculations,
all self-interstitial configurations appear almost degenerate,
which is not the case here with an energy range of about
2 eV for all potentials. The best result is obtained for the
original SW, followed by SWm. The VBWM potential yields
the highest formation energies, due to the fast increase of the
excess energy as a function of λ.

3.2. Threshold displacement energies

An important quantity in the context of irradiation is the
threshold displacement energy (TDE), which is the minimum
kinetic energy to be transferred to a lattice atom for
displacing it from its original site to a new metastable defect
position. It allows us to quantify the lattice resistance to
the creation of point defects, and is a required input for
large-scale calculations of damage during irradiation. TDE
is a highly anisotropic quantity in covalent materials, and
a well-constructed average can be used [31]. Although the
determination of TDE is computationally intensive, accurate
first-principles calculations have been recently achieved [31,
33, 34].

In table 4 are reported computed TDE values, averaged
over 1000 uniformly randomly chosen lattice directions or
corresponding to high symmetry orientations, determined
using the different potentials considered here, and the
reference values of Holmström et al [31]. Considering first
the averaged data, the new potential proposed here clearly
outperforms the original SW potential, yielding too low
values, and the VBWM potential, yielding too high values.
Regarding now specific directions, the most important one is
〈111〉(B), since it corresponds to the absolute minimum of
possible TDE values, i.e. it is the direction of the easiest defect
creation in the silicon lattice. It appears that all potentials lead

to values greater than the first-principles reference, the best
agreement being obtained for SWm and SW.

4. Plasticity

4.1. Dislocation stability

We now focus on the performance of the potentials for
reproducing plasticity-related properties. We first determined
the relative stability of the possible dislocation core
configurations. This is a stringent test since interatomic
potentials are usually hardly able to reproduce with accuracy
the energies associated with the highly distorted core
geometries. Table 5 shows the core energy differences for
different dislocation cores for the different potentials and
first-principles calculations [15, 35–39]. These have been
obtained by relaxing a single dislocation using cylinder-like
boundary conditions and a large system including 3360
atoms in order to avoid technical issues associated with
small cells [40]. In a few cases, additional calculations using
quadrupole dislocations and periodic boundary conditions
were performed, with no noticeable changes.

The geometries of all stable dislocation cores are shown
in figure 1. First, we focus on the non-dissociated screw
dislocation, which is important for the low temperature
plasticity of silicon [16, 41–46]. All potentials found the
sessile core C2 (figure 1) as the most stable one, albeit
with half energy differences compared to the first-principles
reference. This core exhibits a double-period reconstruction
along the dislocation line, seemingly close to the double-
period DP core of the 90◦ partial dislocation. A, the second
stable core, is slightly higher in energy. A known issue of the
original SW potential is that the core B [47], unstable with
first-principles calculations, is more stable than the shuffle
core A [15, 48, 49]. With the new potential SWm and VBWM,
the B core becomes unstable as in first-principles calculations.

Another important dislocation is at 60◦, which is expected
to be first nucleated during the relaxation of epitaxied thin
films [50–53]. Recent investigations have revealed that the

4
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Figure 1. Geometries of stable dislocation cores in silicon: A (a) and C2 (b) screw dislocation cores ({111} projection); G (c) and S3 (d)
60◦ dislocation cores ({110} projection); 30◦ (e), single-SP (f) and double-period DP (g) 90◦ partial dislocation cores ({111} projection).

Table 5. Energetics of different dislocations in silicon, in eV per Burgers vector. A/C2 and B/C2 are the energy differences between the
screw core configuration A (B) and the most stable one C2 [35]. S1/G and S3/G are the energy differences between the 60◦ core
configuration S1 (S3) and the most stable one G [36]. Erec is the core reconstruction energy of the 30◦ partial dislocation. Finally, DP/SP is
the core energy difference between the double and simple period of the 90◦ partial dislocation [37].

Screw 60◦ 30◦ 90◦

A/C2 B/C2 S1/G S3/G Erec DP/SP

Ref. 0.54 [35] → A [15] → S3 [36] 0.6 [36] 0.9 ± 0.4 [38, 39] '0 [37]
SW 0.20 0.06 −0.20 −0.39 0.82 0.33
VBWM 0.27 → A 0.39 0.17 0.52 0.07
SWm 0.27 → A 0.21 −0.21 0.83 0.05

core S1, proposed in the pioneering work of Hornstra [54],
was not stable, and that the most stable configuration was a
sessile G core [36]. No potentials were able to reproduce the
first result. For the second one, only the VBWM potential
yields the right behaviour, since with both SW and SWm

another sessile configuration, S3, corresponds to the lowest
core energy. This last configuration is quite complex, but
ensures the complete passivation of dangling bonds in the
dislocation core, as for the G core.

Finally, we have investigated the energetics of 30◦ and
90◦ partial dislocations, which govern the plasticity of
silicon at high temperatures [26]. The 30◦ is known
to be reconstructed along the dislocation line, while it

has been shown that two configurations, with either a
single- (SP) or a double-period (DP) along the dislocation
line, are quasidegenerate in energy for the 90◦ partial
dislocation [40]. The SWm potential appears as the best
candidate in that case, since it yields the correct reconstruction
energy of the 30◦ partial dislocation, and the two possible
core configurations for the 90◦ partial dislocation are
quasidegenerate in energy, in excellent agreement with
first-principles calculations.

4.2. Shear

Another criterion associated with an appropriate modelling
of plasticity is the ability to reproduce the behaviour of
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Table 6. Critical stresses (in GPa) for homogeneous shearing of
{111} planes, along 〈110〉 and 〈112〉 (twinning and anti-twinning)
directions, for all potentials and DFT-LDA.

〈110〉 〈112〉-T 〈112〉-AT

LDA 8.5 7.6 12.5
SW 8.5 10.0 7.3
VBWM 10.4 10.0 11.9
SWm 10.6 10.4 12.5

silicon bulk under high shear stress. This property is,
for instance, important for dislocation nucleation [50, 51].
It has been shown in earlier investigations that, despite
some limitations, the original SW potential was one of
the most efficient ones [14, 55]. In order to check the
performance of the new SWm potential, the critical stress
associated with the homogeneous shear of {111} planes has
been computed for three high symmetry directions, taking
into account the relaxation of the volume. The results are
reported in table 6 for the three potentials, and compared
to first-principles DFT-LDA calculations [56] made with the
SIESTA code [57].

For the easiest directions, 〈110〉 and 〈112〉-T, all
potentials tend to slightly overestimate the critical shear stress,
and the best quantitative agreement is obtained for the original
SW potential. Unfortunately, it also favours an easy shearing
along the 〈112〉-AT direction, which is clearly in discrepancy
with DFT-LDA results. The correct behaviour, i.e. the lowest
stress value for the 〈112〉-T direction followed by 〈110〉 and
〈112〉-AT, is recovered for the SWm and VBWM potentials.
Overall, there is a qualitative improvement using the new
parametrization SWm, or the VBWM potential, compared to
the original SW.

4.3. Generalized stacking faults energy surfaces

Although they cannot be directly related to a real physical
mechanism, generalized stacking faults (GSFs) energy
surfaces [59] are often computed because they can be
combined with Peierls–Nabarro models [60, 61] to predict
dislocation core properties [62–64]. Their correct modelling
is then a good criterion to determine the aptitude of a given
potential for dislocation-related properties. The original SW
potential has been shown to be well suited for calculating
GSF energy surfaces in good agreement with more accurate
calculations. In particular, the SW potential leads to smooth
energy variations as in first-principles simulations, a feature
which is not well reproduced by more recent potentials [14,
55].

Figure 2 represents the GSF energy curves along the
two most important slip systems. The smooth aspect of the
curves for the three potentials confirms that this characteristic
is due to the simple analytical formulation of the SW
potential [14]. For the shuffle 〈110〉{111}, the original SW
potential clearly underestimates the energy variation. A clear
improvement is obtained for both the SWm and VBWM
potentials, although the computed maxima remain slightly

Figure 2. GSF energy curves for the shuffle 〈110〉{111} (top) and
glide 〈112〉{111} (bottom) slip systems, computed for the SWm
potential (dashed line), the original SW potential (dot-dashed line),
and the VBWM potential (dotted line). The first-principles results
obtained by Juan and Kaxiras [58] are reported for reference (full
line).

lower than first-principles results. For the second slip system,
all potentials overestimate the reference data. The best
agreement is obtained with the VBWM potential, followed by
the SW and SWm potentials. Overall, there is a bare gain in
performance using the new SWm potential compared to the
original parametrization, but it worth recalling that the latter
is already superior to other potentials [14].

4.4. Fracture

The ability of the different potentials to describe fracture has
been studied by computing the propagation of (111)[2̄11]
cracks. {111}〈2̄11〉 is an easy cleavage system in silicon, for
which fracture is stable in a wide range of energy release
rates G (2 J m−2

≤ G ≤ 16 J m−2) [65]. Cleaved surfaces
are atomically flat with few defects which are predominantly
steps with a specific symmetry [66]. In pure tensile mode and
at low crack velocity (<800 m s−1), a systematic deviation
from the original fracture plane is observed [67]. These
experiments have been successfully reproduced by hybrid
quantum/classical calculations [68], allowing for physical
explanations of the observed behaviours [69, 70].

We describe here the procedure used since fracture
simulations are not standard. Our set up consists in a
quasi-2D system of 703 872 atoms with dimensions '138 nm
along [2̄11]×, 132 nm along [111], and 0.7681 nm along
[011̄]. Periodic boundary conditions are applied along the
last dimension. A (111)[2̄11] notch was introduced in the
sample with an initial crack tip position at almost 1/3
of the total length. This system was successively loaded
by an homogeneous rescaling of the coordinates in pure
tensile mode (mode I), the load being conserved by fixing
positions of atoms belonging to top and bottom planes
in the [111] direction. Starting from an initial value of
1.8%, the tensile strain was increased in steps of 0.1%,
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Figure 3. (a, b, c): atomic structures before crack propagation for the SW (G ' 17.35 J m−2), VBWM (G ' 4.40 J m−2), and
SWm (G ' 14.40 J m−2) crack calculations respectively (mode I loading). Black curves on the figures highlight crack tip reconstructions
with seven-member rings enclosed in bold curves. (d, e, f): dynamic crack tip structures after 12–15 ps of propagation for the SW, VBWM,
and SWm potentials, with the same loadings as (a, b, c).

alternating with atomic position relaxation using a damped
molecular dynamics algorithm and a maximum force criterion
of 3 × 10−4 eV Å

−1
. When crack tip instability occurred, a

non-damped molecular dynamics was performed to monitor
the crack propagation. With this procedure we do not aim to
reproduce the experimental minimal energy release rate for
fracture since our simulations include periodicity along the
crack front, temperature close to 0 K, and short simulation
times ('15 ps). However, it allows for a rigorous comparison
of fracture behaviour for the three potentials in the same
conditions.

The SW potential required the largest load (4.10% ±
0.05% strain or energy release rate G = 17.35 J m−2

±

0.45 J m−2) for crack propagation, due to an efficient
spreading of stress at the crack tip following three successive
reconstruction stages. The tip structure just before crack
opening is characterized by the presence of heptagonal rings,
forming elongated atomic chains along the [111] direction
(figure 3(a)). The propagating crack quickly becomes highly
disordered, with a rather round and amorphous tip structure
and the eventual formation of atomic chains along the [111]
direction. The cleaved surfaces are also highly disordered and
far from being atomically flat (figure 3(d)).

A significantly different behaviour is obtained using
the VBWM potential (figures 3(b), (e)). In that case, the
crack tip starts to propagate when the loading strain is
2.15% ± 0.05% (or G = 4.40 J m−2

± 0.2 J m−2). For lower
values, no tip reconstructions occur, in disagreement with
electronic structure calculations [69, 70]. Nonetheless, the
crack propagation with this potential is fully brittle, leaving
atomically flat surfaces. At higher loads (2.70% strain), one
surface remains non-reconstructed whereas the other exhibits
the alternating five-atom and seven-atom rings of the Pandey
reconstruction [70].

Finally, using the SWm potential, we found that the crack
tip reconstructs upon loading (figure 3(c)), but to a lesser
extent than the SW potential, and leading to a structure
quite similar to electronic structure results [69]. Crack tip
propagation then occurs for a strain of 3.65% ± 0.05%
(G = 14.40 J m−2

± 0.45 J m−2). During the very
first stages, a seemingly brittle fracture is obtained, with
formation of Pandey-like reconstructions on one surface as in
electronic calculations, and atomically flat cleaved surfaces.
In this initial dynamic stage, some defects or reconstructions
occasionally occur on one surface and among them some
structures characteristic of the rotated Pandey reconstructions
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Table 7. Energy differences (in eV/atom, relative to the cubic diamond phase) and structural parameters (lattice constant a in Å, and c/a
ratio when applicable) for the β-tin, FCC, and BCC phases. Reference values correspond to electronic structure calculations [71, 72], either
from QMC or density functional theory.

β-tin FCC BCC

1E a c/a 1E a 1E a

Refs. [71, 72] 0.19–0.45 4.81 0.552 0.57 3.89 0.53 3.42
SW 0.200 4.970 0.561 0.40 4.146 0.281 3.24
VBWM 0.642 4.937 0.61 0.976 4.257 0.871 3.332
SWm 0.539 4.950 0.589 1.155 4.226 0.935 3.313

which were also observed with more precise simulation
schemes. However, after 6–9 ps, the fracture process becomes
increasingly less brittle, with the blunting of the crack tip
and the formation of large defected zones including steps of
several atomic planes (figure 3(f)).

The comparison of the three potentials reveals that there
is a relation between the maximal load attained and the
propagation behaviour of cracks. In fact, high strain values
are required for the SW and SWm potentials, which results
in a large strain energy released during crack propagation
and the dynamical formation of many defects at the crack tip
after a short time. Conversely, propagation is obtained for a
much lower strain value in the case of the VBWM potential,
allowing for a fully brittle crack propagation. Compared
with experimental observations of cleaved surfaces, it appears
that this potential is the more appropriate for describing
crack propagation. Concerning the structure of the crack
tip, electronic structure calculations revealed a specific crack
tip reconstruction before propagation. This feature is best
reproduced by the SWm potential, but missed by the VBWM
potential. Then none of the tested potentials is completely
satisfactory, which is hardly surprising given the complexity
of the fracture mechanism.

5. Additional properties

We aim at improving the original SW potential for materials
science investigations involving silicon in the solid state,
with a specific focus on defects and plasticity. However, in
numerical simulations, it is often required to know how a
potential will behave in extreme conditions, such as high
temperature or high pressure, far from its original fitting
database. In the following, we report our investigations of
several useful properties: the transition pressure of the cubic
diamond → β-tin transformation, the melting temperature
of the crystalline phase, as well as how appropriate the
description of amorphous silicon with the three potentials is.

5.1. Stability of crystalline phases

It is known that the transition pressure needed to transform
the cubic diamond structure to β-tin computed using
DFT-LDA/GGA ranges from 7 to 9 GPa, i.e. lower than
experimental values of 10–12 GPa [72, 73]. Conversely,
transition pressures of 15–16 GPa are predicted by QMC
techniques [71, 73]. The computed β-tin volume is about

15 Å
3
/atom with all approaches, the pressure discrepancy

coming from the energy difference between the two phases
(about 0.5 eV/atom for QMC and 0.25 eV/atom for
DFT-LDA, see table 7) [71, 73].

With the original SW potential, the energy difference
is comparable to the DFT-LDA result, but the volume is
too large (obtained as a2c from values in table 7). The
transition pressure (only roughly estimated here as the ratio
between energy and volume differences) is likely to be in
fair agreement with experiments. For the other potentials, the
energy difference is much higher (due to the larger λ), close
to the QMC results, but the computed volume is much larger,
around 18 Å

3
/atom. Then the pressure transition will be much

higher than in experiments, between 30 and 40 GPa. This
is clearly a failure of these potentials which are not able to
reproduce the compact metallic character of the high pressure
phase. Nevertheless, it can be considered an advantage for
plasticity-oriented simulations, where one wants to use high
stresses (to speed up MD simulations), without triggering
phase transition.

5.2. Melting temperature

The melting temperature was obtained by molecular dynamics
calculations. We searched for the temperature at which
the cubic diamond and the liquid phases coexist, i.e. the
temperature at which the free energies of solid and liquid
phases are equal. Our computations were performed at fixed
volume, whereas they should ideally be performed at constant
pressure. This may lead to a slight overestimation of the
melting temperature.

We found a melting temperature of 1720 K for the
original SW potential, in excellent agreement with the
experimental value of 1687 K. This is not surprising since the
ε parameter has been scaled to reproduce this property [2].
For the SWm potential, we found that the crystal was stable
until 2610 K. Finally, an even higher value of 2850 K was
determined using the VBWM potential. For both potentials,
the high value of the λ parameter greatly enhances the stability
of the cubic diamond phase compared to the liquid. It is
similar to what we obtained for the high pressure phase
transition.

Obviously, it is difficult to recommend using the SWm
potential for solid–liquid transitions. Nevertheless, a too high
melting temperature could be a blessing in disguise. In
fact, computational limitations severely restrict the duration
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Figure 4. Radial distribution functions for the SWm potential
(continuous thin line), the original SW potential (dotted line), the
VBWM potential (dashed line, from [22]), as well as the measured
line reported by Laaziri et al [74] (continuous thick line).

of molecular dynamics simulations, which often prevents
the occurrence of thermally activated events. A common
trick is to use temperatures higher than in experiments to
increase occurrence probabilities, assuming that there are no
mechanism changes as a function of temperature. A high
melting temperature then allows us to do this trick, without
the risk of melting the crystalline structure.

5.3. Amorphous structure

The ability of the SWm potential to describe the amorphous
state of silicon has also been investigated. We have
prepared an a-Si sample by using the following procedure:
(1) crystalline silicon is melted at a temperature of 4500 K
in the NVE ensemble; (2) after equilibration, the liquid
state is quenched to 0 K in the NPT ensemble at a rate of
1011 K s−1, typical of laser experiments [19]; (3) finally a
conjugate gradient minimization is performed while keeping
the density constant. The radial distribution function (RDF)
of the final system is reported in figure 4, and compared to
measurements and results for the original SW and VBWM
potentials. In the case of the SW potential, the RDF curve
is characterized by a non-zero minimum between the first
and second neighbour peaks, as well as an additional peak
at approximately 3.3 Å. These features are not present in a-Si
models obtained with both SWm and VBWM potentials, in
agreement with experiments.

The a-Si sample obtained with SWm is characterized by
an energy of 0.20 eV/atom relative to the crystalline phase.
Measurements of enthalpy differences between amorphous
and crystal silicon are about half this value [75, 76], but
it has been recently shown that first-principles calculations
were required to reach a better agreement between simulations
and experiments [77]. Nevertheless, our computed energy
difference is among the lowest reported in investigations using
classical potentials [19, 78, 79].

It is also known that experimentally prepared a-Si
samples are about 2% less dense than the crystalline

Table 8. Assessment of the capability of the potentials considered
in this work to model different silicon properties. Three stars count
as an excellent agreement with experiments, two stars as a good
one, one star as a fair one, while no star indicates a poor agreement.

Property SW VBWM SWm

Cohesive energy ?? ? ? ? ?
Elastic constants ?? ?
Point defects ?? ? ??
TDE ? ? ??
Dislocations ? ?? ??
Shear ?? ? ? ? ? ? ?
GSF ?? ?? ??
Fracture ? ?
Phase transition ?? ? ?
Melting temperature ? ? ?
Amorphous phase ? ?? ? ? ?

phase [74, 75], a property which is not well reproduced by
the original SW potential, which yields an a-Si sample more
dense by 3%. Despite being specifically designed for a-Si
modelling, the VBWM tends to produce an amorphous model
with a density 6% lower than the crystal [22]. Using our
modified potential, we found instead that our a-Si sample is
2% less dense, in excellent agreement with experiments.

Although a good description of the amorphous phase of
silicon was not a primary goal during our investigations, it
clearly appears that the SWm potential is well suited for this
task. It corrects the spurious behaviour of the original SW
potential, like VBWM, but in addition it also provides an
a-Si model that is in excellent agreement with experiments
regarding density and energy.

6. Conclusions

Our goal was to enhance the ability of the SW potential to
describe extended defects and plastic properties of silicon.
Our investigations confirmed that in order to improve the
accuracy of the original SW potential in several situations,
it is required to strengthen the three-body interactions by
increasing λ. Unfortunately, with a higher λ comes an
automatic increase of the excess energies for defects relative
to the pristine system. This can be partially compensated by
simply tuning the energy scale (as in the VBWM potential) or
by a full refitting of all parameters (this work).

A qualitative assessment of the pros and cons of each
potential is shown in table 8. Although it is obviously
subjective, we believe it is a fair reflection of the results
obtained in this work. Overall, the new potential SWm shows
an improvement for several plasticity-related properties such
as dislocation cores and bulk silicon under homogeneous
shear stress. In particular, it cures some of the known failures
of the original SW potential, such as an incorrect low
energy configuration for screw dislocation and the wrong
easiest shear mode. Compared to other common potentials
like Tersoff or EDIP, the new potential is far superior for
describing plasticity. In fact, it allows for a smooth behaviour
even in situations far from equilibrium, such as dislocations in
motion and highly strained crystals. At the same time, other
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silicon properties already fairly reproduced by the original
SW potential, such as elastic constants and point defects
energies, remain correctly described when using the new
parametrization. Interestingly enough, the potential proposed
here shows a significant improvement in the modelling of
threshold displacement energies and of amorphous silicon.
On the other side, phase transitions are not well described
by the new potential, since very high temperature and
pressure values are required for melting and β-tin transitions,
respectively. This reduces the transferability of the SWm
potential. However, as already discussed in previous sections,
this can be beneficial in many situations because it allows
us to use higher stress and temperature values in numerical
simulations without triggering phase transitions. Thermally
or stress-activated events could then be obtained more easily
during molecular dynamics simulations.

While it shows some improvements compared to the
original version, the capability of the new SWm potential
to describe fracture still suffers from some caveats. In fact
although crack tip reconstructions occurred in agreement
with accurate electronic structure calculations, the crack
propagation is not brittle enough compared to experiments
probably because of the high load required. It is likely that the
fracture process, involving dynamical breaking of bonds and
surface reconstructions, is too complex to be fully reproduced
using the simple analytical formulation of the SW potential.

Finally, we found that the VBWM potential, originally
developed for modelling amorphous silicon, is also slightly
better than the original SW potential regarding plasticity
properties (but not for elastic constants). Also, it is equivalent
to the SWm potential for phase transitions, and is less efficient
in the case of point defects and threshold displacement
energies. The main issue with this potential is probably the
low value of the cohesive energy of the cubic diamond phase.
This may have consequences in a few situations, such as
sputtering simulations or for computing surface energies, for
instance.

In conclusion, we propose a new parametrization of
the SW potential which allows for an improved description
of plasticity-related properties, while retaining most of the
qualities of the original version for modelling point defects.
In addition, the new potential provides a better modelling
of threshold displacement energies and of disordered silicon.
Besides, the fracture description is slightly enhanced, but
not enough compared to experiments. It is likely that the
complexity of the process cannot be captured by the too
simple SW potential.
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