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The effect of an applied pressure on the core of screw dislocations in semiconductors such as Si, �-SiC, and
diamond has been investigated by carrying out tight-binding and first-principles calculations of the variations
in dislocation core energies and in energy barriers for dislocation translation. Pressure is found to have a
sizable effect and can lead to either decreases or increases in the latter quantities. It is also shown that it is
advisable to take into account all pressure-dependent parameters for accurately determining this effect. Nev-
ertheless, we found that for the investigated materials, the effect of pressure was not strong enough to induce
structural transformations of the dislocation core. The mobility of the cores was also found to be dependent on
pressure, which tends to increase or decrease the energy barriers according to the direction of the dislocation
displacement.

DOI: 10.1103/PhysRevB.79.045203 PACS number�s�: 61.72.Lk, 31.15.E�, 81.05.Cy, 62.20.F�

I. INTRODUCTION

Investigations of materials plasticity are usually done
without considering the possible effect of an applied pres-
sure. Obviously, in normal conditions, the only experienced
pressure is atmospheric and it is too small to have any im-
pact. However, a large pressure is present in specific cases
that may considerably modify the mechanical properties of
materials. An example is given by the plasticity properties of
materials present in the earth mantle, into which a huge litho-
static pressure has to be considered. Other cases concern
several mechanical properties experiments such as indenta-
tion and scratch tests. Very high stress can be present locally
in the tested materials, giving rise to stress tensors with large
components. Finally, another relevant situation is the defor-
mation of materials in low-temperature/high-stress condi-
tions.1–3 For instance, it is possible to use high-pressure con-
finement apparatus to plastically deform semiconductors in
this regime. In fact, pressure helps to prevent the failure of
samples that should normally occur since temperatures in
those experiments correspond to a brittle behavior. Neverthe-
less, until now, all theoretical investigations of dislocations
in the low-temperature regime have been done without con-
sidering the effect of pressure.4–8 For a model semiconductor
such as silicon, typical applied pressures in experiments are
in the order of one to several gigapascals,3 which is large
enough to play a non-negligible role. Therefore, in all these
different situations, one may wonder what is the effect of
pressure on the plastic behavior and, in particular, on the
stability and mobility of core dislocations.

Pressure may have several possible kinds of effects on
dislocations. An applied pressure will alter the elastic re-
sponse of the material. The effect of this is a change in elas-
tic constants. Pressure tends to make materials stiffer, and the
strain field associated with dislocations is then expected to be
different from a zero-pressure case. Pressure may also have a
direct effect on the nonelastic part of the dislocation, i.e., the
core. First, dislocation core stability may change, with trans-
formation from one configuration to another. Second, dislo-
cations displacements could be made easier �for instance, by
lowering the Peierls stress� or harder depending on the pres-

sure. Considered together, these factors could have a definite
impact on dislocation cores and therefore on the plastic prop-
erties of material. Nevertheless, to our knowledge very little
is known, although there have been attempts to investigate
the effect of pressure on dislocation cores in several classes
of materials. For instance, Durinck et al.9 computed the
Peierls stress of dislocations in olivine, an important com-
pound in geology since it dominates in the upper earth
mantle. In this material, the complexity of the dislocation
cores prevents a full atomistic description; therefore, the au-
thors determined the Peierls stress by combining generalized
stacking faults calculations and the Peierls-Nabarro
model.10,11 They showed that, in the presence of a pressure of
10 GPa, some slip systems would harden whereas others
would become softer, a result which cannot be fully ex-
plained with elastic effects. Pressure effects have also been
considered in the case of bcc metals such as tantalum.12 It
has been shown that the structure of a screw dislocation core
could be significantly modified upon the application of 10
MPa pressure. However, they found no particular pressure
dependence of the Peierls stress compared to the shear
modulus variation. Regarding semiconductors, Umeno and
Černý13 recently computed the theoretical shear stress as a
function of an applied pressure in diamond, silicon, germa-
nium, and two different silicon carbide polytypes using first-
principles calculations. They showed that in diamond, the
ideal shear strength is being increased by compression. This
finding is coherent with a hard-sphere model, for which com-
pression results in a squeezing of the spheres and a larger
resistance against shear, a picture well suited for fcc metals.
However, they found an inverse behavior for silicon or ger-
manium, while the silicon carbide shear stress decreases in
both compression and dilation. Finally, it has been early
shown that iron-based materials and aluminum exhibited a
nonideal Schmid behavior, and Bulatov et al.14 proposed that
the observed pressure dependence is due to the interaction of
a transient activation dilatancy of the moving dislocations
with external pressure. These different studies suggest that
pressure is an important parameter to account for and call for
further investigations.

In this paper, we describe the results of first-principles and
tight-binding calculations carried out in order to better un-
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derstand how pressure would affect the mobility properties
of semiconductor dislocation cores. We have considered
three different materials, i.e., silicon, diamond, and cubic
silicon carbide, which are especially interesting for both fun-
damental research and applications. Also, for silicon and sili-
con carbide, low-temperature deformation experiments with
confinement pressure have already been done, opening the
way to comparison between experiments and numerical
simulations. After a brief description of the methods and of
the computational systems, the effect of pressure on the sta-
bility of dislocation cores is detailed. Then, we show how
pressure could modify the dislocation mobility using two
different approaches. Our results are then discussed in rela-
tion with available experiments.

II. MODELS

Experimental investigations of dislocations operating in
the low-temperature/high-stress regime have been essentially
made in silicon and in III-V compounds.1–3 The results indi-
cate that these dislocations have a Burgers vector �BV� of
a /2�110� and are not dissociated. The glide planes are as-
sumed to be the “shuffle” �111� set planes �widely separated
and marked as ABA in Fig. 1�, in agreement with the com-

mon idea that dislocations in the “glide” �111� set planes
�narrowly spaced and marked as BCB in Fig. 1� are neces-
sarily dissociated, as observed in the high-temperature/low-
stress regime.19 In silicon dislocations with characters screw,
60°, 30°, and 41°, have been observed.3,20,21 Among all these
possible orientations, the screw dislocation has received a
special attention since it usually governs the plasticity. Also
the screw dislocation can cross slip, i.e., move along differ-
ent directions without diffusion, which is especially interest-
ing for investigating the effect of pressure on dislocation
motion. Theoretical investigations showed that three differ-
ent screw core structures are stable �Fig. 1�. One, labeled A
in this work, is located in shuffle planes.5,22–24 The two other
possible cores are located in glide planes, one having a struc-
ture with a single period along the dislocation line �named
C1�,5,22,24 whereas the other �C2� is reconstructed along the
dislocation line with a double period.25 For silicon, Wang et
al.25 showed that C2 is the most stable configuration. In this
work, we have considered these three possible core struc-
tures in the case of three different cubic materials, silicon,
silicon carbide in the � phase �cubic�, and diamond. Note
that another high-symmetry core configuration has been pro-
posed �named B in the following� on the basis of atomistic
potential calculations,23,26 but that is found to be unstable
within first-principles accuracy.

The study of the dislocation core stability as a function of
pressure has been done by performing self-consistent charges
density-functional-based tight-binding �DFTB� calculations27

using the DFTB+ code and the associated Slater-Koster
parameters.28 The computed lattice parameter, elastic con-
stants, and first derivatives with respect to pressure are re-
ported in Table I. First-principles calculations using the VASP

code29 have also been performed, either to check the results
of the DFTB calculations, or for calculating minimum-
energy paths �MEPs� for dislocation core mobility. We have
used ultrasoft peudopotentials with plane-wave energy cut-
offs of 140 eV �Si�, 240 eV �SiC�, and 280 eV �C�, respec-
tively, and the PW91 generalized gradient approximation
�GGA� for exchange-correlation.30 Within these conditions,
lattice parameters and bulk modulus of 5.476 Å and 100
GPa �Si�, 4.395 Å and 200 GPa �SiC�, and 3.571 Å and 419
GPa �diamond� have been calculated, respectively, in very
good agreement with experiments. The Brillouin-zone inte-
gration has been performed with two special k points along

Ẑ, i.e., the dislocation line orientation, for both methods.
MEPs have been computed, thanks to the nudged elastic
band �NEB� method, using three relaxed images in the
band.31 The recently proposed technique for combining NEB
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FIG. 1. �Color online� Ball-stick representation of the cubic dia-

mond structure projected along the �101̄� direction. The positions
for the different core configurations discussed in the text are shown
�C being C1 or C2�. Directions for dislocation migration are repre-
sented as thin red �gray� lines.

TABLE I. Lattice parameter, elastic constants, and related pressure derivatives for Si, �-SiC, and diamond
computed using the DFTB+ code. Reference data are given in parentheses. �Pressure derivatives are taken
from Refs. 15 and 16 �Si�, Ref. 17 �SiC�, and Ref. 18 �C�.�

a0

�Å�
C11

�GPa� C11�
C12

�GPa� C12�
C44

�GPa� C44�

Si 5.460 �5.43� 160 �167� 4.0 �4.19� 69 �65� 3.0 �4.02� 76 �81� 1.1 �0.80�
�-SiC 4.382 �4.36� 479 �390� 4.5 �3.49� 203 �142� 3.5 �4.06� 235 �256� 1.1 �1.58�
C �dia� 3.563 �3.57� 1178 �1079� 5.9 �6.98� 241 �124� 3.0 �2.06� 633 �578� 3.2 �3.98�
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and dislocations in periodic boundary conditions has been
employed.32

Cells used in this work were oriented along X̂= �112�, Ŷ

= �111�, and Ẑ= �110� directions. A specific cell geometry
was used, yielding an infinite quadrupolar arrangement of
dislocations with periodic boundary conditions and including
only two dislocations in the cell.5,33 Dimensions of systems
are 12�12�2 for tight-binding calculations and 12�12
�1 for first-principles calculations. Additional tight-binding
calculations performed in bigger cells have shown that such
system sizes are large enough to obtain accurate values and
trends. Initial dislocation core configurations have been gen-
erated using elasticity theory and elastic constants reported
in Table I. The effect of a hydrostatic pressure is obtained by
applying a strain along all cell directions. In this work, we
have considered strains not larger than 2% in order to remain
in the validity range of linear elasticity. Corresponding pres-
sures are given in Table II and have been calculated using a
Birch-Murnaghan equation of state fitted on DFTB+ bulk
computations.

III. DISLOCATION CORE STABILITY

The results of stability calculations as a function of pres-
sure for all possible core configurations are reported in Table
III. Clearly, the double period glide configuration C2 has the
lowest energy, in all cases. The shuffle core configuration A
is stable, with a higher energy. For silicon, this is the second
best solution, with an energy difference in very close agree-
ment with a previous work.25 DFTB calculations suggest that
the single period glide core C1 is not stable and relaxes to the
A configuration �or possibly C2 with a 2% compression�. We
have performed first-principles GGA calculations which con-

firm this result, in contrast to previous local-density approxi-
mation calculations.5 Considering �-SiC, all core configura-
tions are stable and the stability ordering remains the same
than in silicon. Finally, in diamond, the single period core C1
becomes competitive compared to C2 although slightly
higher in energy. The shuffle core A is stable but with a very
high energy. In the considered range, the applied pressure
does not change the stability ordering. However, it has a
sizable effect on the magnitude of the energy difference. In
fact, for silicon and silicon carbide, it appears that pressure
increases the stability of the shuffle core compared to both
glide cores. Also, for all materials, there is an important in-
crease in the energy of the single period glide C1 configura-
tion relatively to the double period configuration C2.

Comparing two configurations that are equivalent in terms
of system size, geometry and applied strain, it has to be
noted that the energy difference directly shows how pressure
would favor one configuration over the other. But it remains
relative and does not allow us to determine the effect of
pressure on a dislocation core configuration independently.
Such information can be obtained by calculating the disloca-
tion core energy EC as a function of the applied strain. The
total energy of a relaxed configuration can be written as

E = Ebulk + Einter + 2EC, �1�

where E is the total energy of a system including two dislo-
cations, Ebulk is the energy of an equivalent system with no
dislocations, and Einter is the interaction energy between dis-
locations �including the interaction between the two disloca-
tions in the cell and half the interaction energy between the
dislocation dipole and images due to periodic boundary con-
ditions�. The latter depends on the distance between disloca-
tions, i.e., of the geometry of the system, and is usually cal-
culated in the framework of anisotropic elasticity theory, thus
depending on elastic constants.34 Assuming that the disloca-
tion core radius r0 is equal to the Burgers vector, Einter can be
determined in the framework of anisotropic elasticity theory
and Eq. �1� allows us to determine EC. However, it is impor-
tant to note that all terms in Eq. �1� will directly or indirectly
depend on strain and that corrections have to be made. The
first is Ebulk, which includes the largest part of the energy
increase due to the applied strain. The simplest and most
accurate way to proceed is to compute Ebulk for an equiva-
lently strained bulk system, thus leading to cancellation of
errors associated with total-energy calculations. For the sec-
ond term Einter, one has to take into account that: �i� the
interactions are modified due to the reduction in the distances
between all dislocations and �ii� the elastic constants vary as
a function of pressure. These variations are easily determined
using pressure derivatives �Table I�.

We have determined dislocation core energies EC as a
function of the applied strain from DFTB calculations and
with all the above-mentioned corrections �Fig. 2�. We found
that core energies increase or decrease approximately lin-
early with the applied strain. The amplitude of the energy
variation can be rather large, e.g., −10% for the shuffle core
A in silicon or +8% for the glide core C1 in silicon carbide
and diamond. It also appears that the energy variation de-
pends on the material. The applied pressure tends to lower

TABLE II. Bulk moduli �in GPa�, pressure derivatives, and es-
timated pressures �in GPa� for 1% and 2% compressions computed
using the DFTB+ code and the Birch-Murnaghan equation of state
for Si, �-SiC, and diamond.

B B� P ��=1%� P ��=2%�

Si 98 3.42 3.1 6.6

�-SiC 287 5.1 9.3 20.3

C �dia� 530 5.1 17.3 37.5

TABLE III. Energy differences �in eV per Burgers vector� be-
tween different screw dislocation core configurations for each ma-
terial computed with DFTB+. The most stable configuration, i.e., C2

here, is taken as the energy reference.

0% 1% 2%

A C1 C2 A C1 C2 A C1 C2

Si 0.60 →A 0 0.52 →A 0 0.43 →A /C2 0

�-SiC 0.54 0.61 0 0.41 0.73 0 0.28 0.87 0

C �dia� 1.66 0.23 0 1.64 0.33 0 1.64 0.45 0
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the dislocation cores energies in silicon, whereas an opposite
behavior is observed for diamond. In the case of silicon car-
bide, there is no marked tendency on core energies either
decreasing �A configuration� or increasing �C2 and C1 con-
figurations�.

Overall, our results suggest that the variation in the core
energy as a function of pressure will depend on both the core
configuration and the material. For instance, the energy of
the glide core configuration C1 strongly increases under pres-
sure for both silicon carbide and diamond. The analysis of
the structure provides insights for understanding this result.
In fact, the C1 structure is characterized by a central bond
linking two atoms which are sp2 hybridized. This bond is in
a compressive state with a length lower than the equilibrium
one. Pressure tends to further shorten this bond, leading to a
dramatic increase in the core energy. Conversely, the shuffle
A configuration energy tends to be lowered �except for dia-
mond, for which it slightly increases�, which may be surpris-
ing. One possible explanation lies in the specific geometry of
the core, which is characterized by four largely stretched and
distorted bonds �linking atoms on both sides of shuffle
planes; marked by “B” in Fig. 1�. Applying a pressure would
bring atoms closer, thus lowering the amplitude of bonds
stretching and distortion. Finally, we found that the C2 core
is only weakly sensitive to the applied pressure, with small
variations in the core energy. This configuration shows a re-
constructed core and is thus more complicated, preventing a
simple analysis. It is also interesting to analyze the trends
going from the “softer” silicon to the “harder” diamond.
Overall, we found that, in silicon, an applied pressure would
decrease the core energy, while for harder materials an op-
posite behavior is observed. This suggests that dislocation
cores in silicon are in a tensile state, whereas they are in a
compressive state in diamond. Silicon carbide shows an in-
termediate behavior.

IV. DISLOCATION CORE MOBILITY

The various possible paths for the migration of a disloca-
tion in the cubic diamond lattice are represented in Fig. 1.
Along �112� orientations, screw dislocations move in �111�
planes, with paths ABA for shuffle planes or CBC for glide
planes. Another possible displacement direction is �110�,
with a ACA path encompassed in a �001� plane. Considering
that, in two of these paths, C could be either C1 or C2, we
should investigate five different possible core displacements.
However, in this work, we have limited our investigations to
paths involving C1 for many reasons. First, although the C2
core is found to be the most stable configuration, it is char-
acterized by a Peierls stress which is 50% higher than the
shuffle configuration A.25 It is then not clear whether this
configuration plays an important role in the low-temperature/
high-stress regime. A second issue is that very little is known
about the atomistic mechanisms allowing the reconstructed
C2 core to migrate unlike the other core configurations. Such
an investigation is out of the scope of the present study.
Finally, there is likely an additional energy barrier due to
core reconstruction for the C2 configuration, and the quick
determination of the Peierls energy by simple energy differ-
ences that is described in the following would lead to inac-
curate quantities.

Two different methods have been employed for investi-
gating the mobility of dislocation cores. Quick estimates of
the Peierls energy barriers have been determined by comput-
ing the tight-binding-energy differences between stable and
high-symmetry saddle configurations along migration paths.
These saddle configurations are for instance the B configu-
ration in all materials �see Fig. 1� or the C1 core in silicon.
The total energy of these unstable configurations has been
determined by using as few as possible constraints on two
atoms in the core during relaxation. In the case where the
two considered configurations along the path are stable, this
method still allows us to estimate the energy barrier provided
that one of the computed configurations is very close to the
highest-energy configuration along the MEP; i.e., it is
weakly stable. Our investigations of the stability of the dif-
ferent configurations suggest that this is the case here. In the
second step, results for silicon have been refined by perform-
ing first-principles NEB calculations.

We first describe the results obtained from DFTB calcu-
lations represented in Fig. 3. In the case of silicon, the
lowest-energy barrier corresponds to the ABA path, i.e., to a
screw dislocation displacement in the shuffle plane. With no
pressure, the calculated value is about 0.5 eV per Burgers
vector, in very good agreement with a previous first-
principles result.32 Applying pressure leads to a slight de-
crease in the energy barrier. It has been shown in Sec. III that
the core energy of the configuration A was decreasing as a
function of pressure, which implies that the core energy of
the configuration B is decreasing at a larger rate. A possible
explanation is related to the structure of the screw dislocation
at position B, which is characterized by two opposite rows of
three-coordinated atoms, all showing a single dangling bond.
Homogeneously straining the lattice brings these two rows
closer, thus minimizing the energy penalty due to dangling
bonds. Other displacement directions such as ACA and BCB
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lead to larger Peierls energies increasing with pressure. In
order to confirm these results that have been obtained with
energy differences calculated in the tight-binding approxima-
tion we have performed first-principles NEB simulations for
the ABA and ACA paths. The computed MEPs, represented
in Fig. 4, confirm DFTB calculations. In fact, the energy
barrier along ABA �ACA� decreases �increases� as a function
of the applied pressure. Also, for the ACA path, the energy
variations in Figs. 3 and 4 are similar. The only minor dif-
ference comes from the energy decrease for the ABA path,
which is much larger in first-principles results with values of
0.41 eV per BV at zero strain and 0.31 eV per BV at 2%.
These results then suggest that pressure could significantly
enhance the screw dislocation mobility in the shuffle set for
silicon.

Analysis of data for silicon carbide reveals a different
behavior since the lowest-energy MEP at zero pressure cor-
responds to an ACA path. In this case, the screw dislocation
would move in a �001� plane, alternatively visiting shuffle A
and glide C1 configurations. This result has to be considered
with caution because A and C1 are two stable configurations
for �-SiC, and a simple energy difference could be a very
rough approximation in that case. In the case of an applied
pressure, it is interesting to note that there might be a tran-
sition between two glide modes at about 1.3%, with a dis-
placement direction in glide set planes being favored at
higher pressure. Finally, for carbon, we found that the ACA
path is always favored and that the energy barrier, much
higher than in silicon and silicon carbide, is decreasing with
pressure.

V. DISCUSSION

In all cases, we found that an applied pressure has a no-
ticeable effect on both stability and mobility properties such
as core energies and energy barriers for dislocation transla-
tion �Peierls energy� and increases or decreases these ener-
gies depending on dislocation core configuration or displace-
ment directions. This is a further confirmation of a previous
work on olivine which suggested that slip systems in this
material could become softer or harder depending on the
applied pressure.9 Although covalent materials considered in
our work have a simpler structure than a silicate such as
olivine, similar conclusions are drawn here. In a general situ-
ation, taking into account the effect of an applied pressure is
therefore necessary.

The most important point is that surely it is extremely
difficult to predict how dislocation properties will be affected
by pressure. For few cases, it seems that simple arguments
based on electronic and atomic structure analysis could ex-
plain the computed variations. But in many others, such an
approach fails. Because it is not possible to draw simple and
general rules, atomistic calculations have to be performed.

1 2

Strain (%)

0

0.5

1

1.5

P
ei

er
ls

en
er

gy
(e

V
/B

ur
ge

rs
ve

ct
.)

1 2

Pressure (GPa)

1 2
0

0.5

1

1.5

3 6

Si

0

0.5

1

1.5

P
ei

er
ls

en
er

gy
(e

V
/B

ur
ge

rs
ve

ct
.)

6.5 13

3C-SiC

13 26

Diamond

0

0.5

1

1.5

ABA...

ACA...

CBC...

ACA...

CAC...

ABA...

BCB...

ABA...

FIG. 3. �Color online� Energies required for translating the dis-
location cores �Peierls energies� as a function of the applied pres-
sure, for different paths and materials �white dots joined by full
lines�. For carbon, the CBC direction is not represented since it is
associated with a very-high-energy barrier ��2.7 eV�.

Reaction coordinates

0

0.2

0.4

0.6

0.8

E
ne

rg
y

(e
V

/B
ur

ge
rs

ve
ct

.)

ACA...

ABA...

1%

0%

2%

0%

0 1 2
Strain (%)

0.2

0.4

0.6

0.8

P
ei

er
ls

en
er

gy ACA...

ABA... FIG. 4. �Color online� Mini-
mum-energy paths associated with
the displacement of a screw dislo-
cation along the ABA �black lines�
and ACA �red �gray� lines� direc-
tions, as a function of an applied
homogeneous strain, in silicon.
Peierls energies �in eV per Bur-
gers vector�, determined as the
maximum energy along MEP, are
reported in the inset graph.

THEORETICAL STUDY OF PRESSURE EFFECT ON THE… PHYSICAL REVIEW B 79, 045203 �2009�

045203-5



This issue may also be more critical for covalent materials
than for metals for instance.

Another point concerns the determination of core energy
using periodic boundary conditions, a widely used technique
in first-principles calculations of dislocations. As explained
above, in the determination of interactions between disloca-
tions, it is advised to take into account the variations in both
the structural parameters and the elastic constants as func-
tions of pressure. To emphasize this point, we have drawn as
dashed lines in Fig. 2 the calculated core energies using both
lattice and elastic constants of nonstrained materials. Without
corrections, core energy variations show qualitatively similar
variation, albeit large differences in amplitude could occur.
For instance, taking into account corrections in the case of
diamond leads to strong reduction in the pressure effect.
Therefore, in the relevant situations, not only pressure has to
be taken into account in calculations, but it also has to be
very carefully dealt with.

In this work, a pressure has been applied by homoge-
neously straining the materials, with strains up to 2%. The
pressure corresponding to the strain is easily obtained from
the bulk modulus. For instance, a strain of 2% corresponds to
an applied pressure of about 6.6 GPa for silicon, i.e., in the
range of values considered in confinement pressure
experiments.3 For silicon, the semiconductor with the largest
amount of experimental data on plasticity, our calculations
show that there is no transition in stability between the C2
glide core and the A shuffle core in this pressure range. In
fact, assuming that the core energy variations represented in
Fig. 2 are linear and can be extrapolated to large strains, such
a transition would occur for a strain of about 6.7%, i.e., an
applied pressure of about 29 GPa, which is much higher than
the pressure for phase transition from the cubic diamond to
the �-Sn structures in silicon. Nevertheless, our results show
that due to the applied pressure, the stability of the A core is
increased relatively to C2 and that the screw dislocation mo-
bility in a shuffle plane is made easier. These calculated
trends are then in agreement with experiments exhibiting
mobile nondissociated shuffle dislocations during high-
pressure confinement experiments in the low-temperature/
high-stress regime.

Finally, it is instructive to compare our investigations on
pressure dependence on dislocation cores properties in the
case of semiconductors with what is known for fcc metals.
Bulatov et al.14 suggested that there is an additional dilation
for moving dislocations compared to dislocations at rest and

that this is the coupling of this dilation with an external
pressure which is responsible for the observed pressure de-
pendence at the macroscopic scale. Here, we have deter-
mined the variation in the core width for dislocations at rest
and in the transition state, a quantity which is accessible
from NEB calculations.32 For both ABA and ACA paths, we
found a dislocation core which is 20% wider in the transition
state. Therefore, in a semiconductor such as silicon, a wider
core for a dislocation in motion does not necessarily imply
an increase in the Peierls energy with a growing pressure.
However, we noticed that the width difference between dis-
locations in motion and at rest follows the same variation as
a function of pressure than the computed Peierls energy, i.e.,
decreases for the ABA path, and increases for the ACA path.
This result indicates that properties of dislocation cores in
covalent materials are drastically different than in metals. In
covalent materials, it is necessary to take into account the
structure and chemistry of the dislocation core at the atom-
istic level since this fully determines the properties of dislo-
cations.

VI. CONCLUSION

We have performed tight-binding and first-principles cal-
culations of the effect of an applied pressure on the core of
screw dislocations in semiconductors such as Si, �-SiC, and
diamond. More specifically, the variations in dislocation core
energies and in energy barriers for dislocation translation as a
function of pressure have been computed and discussed.
Overall, we found that the pressure has a noticeable effect,
either increasing or decreasing both quantities, suggesting
that pressure should be carefully taken into account in the
treatment and analysis of the results. This is especially im-
portant for investigations where a large applied pressure is
present. Nevertheless, this effect is not strong enough to
change the stability ordering in any of the investigated ma-
terials. Decrease or increase in the energy barrier for dislo-
cation core mobility, depending on the investigated direction,
has also been shown, in agreement with available experi-
ments in the case of silicon. These results suggest that elec-
tronic structure calculations are required for investigating
dislocation core properties in semiconductors.
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