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First principles determination of the Peierls stress
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Abstract

The Peierls stress of the a/2h110i screw dislocation belonging to the shuffle
set is calculated for silicon using density functional theory. We have checked
the effect of boundary conditions by using two models, the supercell method
where one considers a periodic array of dislocations, and the cluster method
where a single dislocation is embedded in a small cluster. The Peierls stress is
underestimated with the supercell and overestimated with the cluster. These
contributions have been calculated and the Peierls stress is determined in the
range between 2.4� 10�2 and 2.8� 10�2 eV Å�3. When moving, the dislocation
follows the {111} plane going through a low energy metastable configuration and
never follows the 100 plane, which includes a higher energy metastable core
configuration.

} 1. Introduction

The Peierls stress is defined as the minimal stress needed to move a dislocation
from one lattice site to the next one at 0K (Hirth and Lothe 1982). It is a
fundamental quantity in the study of plasticity in materials science. Close-packed
metals, ductile, have low Peierls stresses, typically 10�4� (� is the isotropic shear
modulus; the average value for Si is 0.425 eV Å�3 (Hirth and Lothe 1982)), whereas
values 2 to 3 orders of magnitude higher are associated with brittle covalent crystals.
Experimentally, its determination is difficult since materials are brittle at low
temperature. Then it is usually obtained by extrapolating measured yield strengths
to the absolute zero temperature. In addition, several Peierls stresses can be defined
for a given material, one for each kind of dislocation, and the separation of the
different contributions in experiments is not an easy task.

The measurement is especially difficult in covalent crystals, since the brittle
to ductile transition happens at high temperature, leading to rough estimation of
the Peierls stress. The case of silicon, which is often considered as a model material
for the study of cubic diamond and zinc blende covalent crystals and, as a result,
has been extensively studied, is a good illustration. Experiments indicate a value
ranging between 0.1� and 0.5� (Suzuki and Takeuchi 1989), obtained from yield
strength measurements in the ductile regime. For these temperatures, it is known
that dislocations are dissociated and glide along the narrowly spaced {111} planes
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(Alexander 1986), thus called ‘glide planes’ (Hirth and Lothe 1982). It has been
suggested that these partial dislocations move by nucleation and propagation of
kink pairs (Duesbery and Joós 1996, Bulatov et al. 2001). The experimental
Peierls value is then associated with the displacement of partials.

However, new information on the plasticity of silicon and other diamond
cubic materials has recently emerged, concerning deformation at unusually low
temperatures. Experimentally, silicon samples submitted to large shear stress
components have been deformed at low temperature without failure. This has
been made possible by applying a very high confining pressure or in scratch tests
(Rabier and Demenet 2001, Rabier et al. 2000, 2001). The observed dislocation
configuration differs strongly from the usually reported dissociated
dislocations seen after deformation at higher temperature. The dislocations are
undissociated, and thus most likely glide along the widely spaced ‘shuffle planes’
(Hirth and Lothe 1982), and are aligned along several favoured orientations,
h110i=screw, h112i=30� and h123i=41�. Rabier and Demenet pointed out (2000)
that the observation of the non-dissociated dislocations fits into the analysis of
Duesbery and Joos (1996), which, if extrapolated, predicts a transition from disso-
ciated dislocations in the glide set in the high temperature/low stress domain, to
undissociated dislocations in the shuffle set in the low temperature/large stress
domain. Similarly, in III–V compounds with the zinc-blende structure, deformation
experiments at low temperature under high confining pressure indicate that the low-
temperature plastic deformation is governed by undissociated screw dislocations
(Suzuki et al. 1998). It is then very important to characterize shuffle dislocations
to understand the plasticity properties of these materials.

Despite the increasing interest, there is little quantitative information on
the energetics and mobility properties of the dislocations of the shuffle set,
compared to those already obtained for the partials in the glide set, which have
been the subject of most studies until recently (Bulatov et al. 2001). For example,
as far as we know, no attempts have been made to determine experimentally the
Peierls stress of perfect dislocations in cubic diamond or zinc-blende materials.
However, several calculations have been performed for addressing these issues.
Naturally, the screw orientation is selected because, among all characteristics, it
always plays a special role. Indeed, it allows for cross-slip, and in the particular
case of the diamond cubic structure, it is the orientation where transition
from glide set to shuffle set is possible without any diffusion. Moreover, in the
observations after low-temperature deformation, it appears as one of the favoured
orientations, probably indicative of significant Peierls valleys (Rabier et al. 2001).

The screw dislocation in the shuffle set has been the subject of recent investiga-
tions, such as stability calculations using empirical interatomic potentials (Koizumi
et al. 2000) and ab initio methods (Arias and Joannopoulos 1994, Pizzagalli et al.
2003). Without going back to early elasticity-based estimates of the energetics of
the screw dislocation (Celli 1961, Teichler 1967), the Peiers stress on the screw
dislocation in the shuffle set has been estimated to be 0.048 eV Å�3 by Joós et al.
(1994), with the Peierls–Nabarro model. More direct atomistic calculations with the
Stillinger–Weber potential by two different groups led to 0.036 eV Å�3 (Ren et al.
1995) and 0.013 eV Å�3 (Koizumi et al. 2000). Miyata and Fujiwara performed ab
initio calculations and deduced somewhat indirectly a Peierls stress ranging from
0.14 to 0.19 eVA�3 (Miyata and Fujiwara 2001), about 15 times the value proposed
in (Koizumi et al. 2000). However, these approaches suffer from some insufficiencies.
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If the Peierls–Nabarro model is shown to represent planar dislocation cores well
(Ren et al. 1995), the predicted values for the Peierls stress are more doubtful since
this model considers the dislocation core as an undeformable object moving across
the atomic rows. Concerning the use of the Stillinger–Weber potential, it has been
shown (Pizzagalli et al. 2003) that it does not predict the stability of the various screw
core configurations which is a necessary prerequisite to any reliable Peierls stress
determination. It is also necessary to have a quantitative estimate of the effect of the
boundary conditions, particularly in the relatively small cell sizes used in ab initio
computations.

In this paper, we present the Peierls stress calculation of the shuffle screw
dislocation using an ab initio method. In the same spirit of a previous report on
the structure and energetics of this dislocation (Pizzagalli et al. 2003), the boundary
effects which cannot be avoided in this kind of calculation were carefully determined.
The Peierls stress has been calculated for both periodic and fixed conditions, and has
been found in the range between 0.024 and 0.028 eV Å�3 when the dislocation moved
in the h112i direction. This direction has been found to be the easiest, compared to
the h110i direction.

} 2. Computational methods

The determination of the Peierls stress is done by increasingly shearing
the system, oriented as shown in figure 1, so that the force on the dislocation is
maximum along a chosen direction. Between each shear strain increment of 1%, the
atomic positions are relaxed. The corresponding Peierls stress is reached when the
dislocation moves. Two selected directions, h112i and h110i, have been investigated
in this work. Recent ab initio calculations have shown that the configuration A,

Figure 1. Ball-and-stick representation of the cubic diamond structure, oriented along axis
X¼ [121], Y ¼ ½�111�11� and Z ¼ ½�1101�. Shuffle and glide sets of planes are shown, as well
as the three possible stable locations A, B and C for a screw dislocation in silicon
(Pizzagalli et al. 2003).
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where the screw dislocation is located in the center of one hexagon is the most stable
for Si (Pizzagalli et al. 2003). The configuration B, with the screw located on the long
edge of one hexagon is weakly metastable. Another metastable configuration, C, is
obtained for a screw located on the small edge of one hexagon. Starting from the
most stable configuration A, the first direction corresponds to a sequence ABA,
whereas the second one should favour a sequence ACA (figure 1).

The simulations have been performed in the framework of density
functional theory (Hohenberg and Kohn 1964, Kohn and Sham 1965) and local
density approximation (Goedecker et al. 1996), by using the code ABINIT (Gonze
et al. 2002). The ionic interactions were described by norm-conserving Troullier–
Martins pseudopotentials (Troullier and Martins 1991). We used a plane wave
energy cutoff of 10Ry and two special k-points along the dislocation line.
Previous calculations with similar parameters have allowed us to accurately model
screw dislocations in silicon (Pizzagalli et al. 2003).

Two crystal models have been constructed (Lehto and Heggie 1999). In the first
one, a dislocation dipole, cut from an infinite quadrupolar distribution, is placed in
the crystal unit cell, and periodic boundary conditions are used in both directions
normal to the dislocation line (figure 2). In the second model, a single dislocation
is placed at the centre of a cluster whose lateral surfaces are kept fixed. In both
cases, periodic boundary conditions are applied along the dislocation line. We have
considered these two models because, as discussed in the following, they modify
differently the determined Peierls stress. In the fully periodic case the interaction
of the dislocation with the surrounding ones helps its move, so tending to under-
estimate the Peierls stress, whereas in the cluster model the interaction with the fixed
boundaries opposes the dislocation displacement and leads to an overestimation of
the Peierls stress. Besides these purely mechanical effects, the two methods also show
differences in the electronic structure whose effects become unimportant for cells or
clusters large enough.

In case of periodic boundary conditions, we used a 12� 12� 1 cell, i.e. 144 Si
atoms. These dimensions allow a reasonable distance between dislocations, about
6jbj ’ 23 Å (b is the Burgers vector, |b|¼ 3.84 Å), while remaining affordable with

Figure 2. Models used in the simulations: oblique cell including a dislocations dipole with
periodic boundary conditions (left), and cell with a single dislocation and fixed
boundary conditions (right).
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ab initio computations (Pizzagalli et al. 2003). All atoms were relaxed, the imposed
deformation being kept by the periodic conditions. In case of fixed boundaries, a
8� 16� 1 cell, i.e. 128 Si atoms, was considered and dangling bonds belonging to
edge atoms were saturated by hydrogens. The system was placed in the centre of a
supercell whose dimensions allowed a 3 Å vacuum left between a hydrogen and the
supercell edge, and the imposed deformation was kept by relaxing only Si atoms not
located on the system edges. The distance between the central dislocation and the
frozen edges is then approximately 12 Å.

} 3. Results and discussion

Starting with the periodic system, for shears up to 6% the dislocations remained
in the vicinity of their initial locations. The energy of the relaxed system increased
with the deformation due to the storage of elastic energy in the structure. However,
when the applied deformation was equal to 7% the two dislocations of the dipole
started to move closer during the relaxation. Figure 3 shows different steps of the
evolution of the structure. First, the bond on the long edge of the hexagon broke,
with dislocations approximately in the configuration B (figure 3b). Then the disloca-
tions were found again in the configuration A, but in the next hexagon (figure 3c).
Finally, the dislocations continued to slip closer during the relaxation (figure 3d). In
fact, there is an attractive force between the two dislocations with opposite Burgers
vectors, which increases as the dislocations come closer. This behaviour is different
from what was obtained by Miyata and Fujiwara, where the movement stopped once
the dislocations slip by one hexagon (Miyata and Fujiwara 2001). This difference
may be explained by the different periodic boundary conditions used in their work,
or by their larger criterion value for stopping the relaxation (10�3Ry/bohr to
compare with 10�4Ry/bohr in our work). In the case of a fixed boundary system,
we observed a similar behaviour, the dislocation moving away from the centre, but
only when the deformation is equal or greater than 8%.

The stress required for moving the dislocations closer is simply the product of
the imposed shear with the relevant shear modulus G (The h110i{111} shear modulus
G is 1/3(C11�C12þC44) (Hirth and Lothe 1982) and is 0.366 eV Å�3 from our
calculations (0.381 eV Å�3 experimentally)). So, in the case of periodic conditions,
the calculated stress ranges between 0.06G and 0.07G. However, due to periodic
conditions, we have an infinite distribution of dislocations, in interaction. This stress
is then not the real Peierls stress, due to these interactions. Considering that the
energy varies smoothly during the ABA move, and B is a saddle point, the disloca-
tions are expected to move once they have covered roughly half the distance between
A and B. Using isotropic elasticity theory, we have evaluated the extra stress at this
point to be about �0.0051G. The main contributions are coming from neighbour
dislocations along the slipping direction and favour the slip, lowering the determined
stress. The real Peierls stress then ranges between 0.0651 and 0.0751G, as determined
with periodic conditions. For fixed conditions, the stress ranges between 0.07 and
0.08G. In that case too, the calculated stress is not the real Peierls stress. In fact,
the fixed edges of the system create an extra force, opposed to the slip of the
dislocation and increasing the calculated stress. Following the work of Shenoy
and Phillips (1997), we estimated the extra stress to be 0.0046G when the dislocation
is located at midpoint between A and B. The Peierls stress then ranges between
0.0654 and 0.0754G. The agreement between values calculated using periodic or
fixed conditions is very good. Therefore, we expect that our results are independent
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on the boundary conditions. In the present situation where the Peierls stress is
relatively large, the agreement between the two methods indicates that the use of
sophisticated boundary treatments, such as flexible boundaries (Rao et al. 1998), is
not essential.

Our Peierls stress ranges between 0.0651 and 0.0754G, i.e. between about
2.4� 10�2 eV Å�3 and 2.8� 10�2 eV Å�3. We have performed atomistic simulations
of the dislocation slip due to an applied stress, which is expected to be more precise
than indirect methods, such as the Peierls–Nabarro model. Nevertheless, if we

Figure 3. Evolution of the system for a shear of 7% (a) Initial configuration of one dipole,
with a distance d¼ 6|b|. (b) The two dislocations are approximately in the
configuration B, with d ’ 5jbj. (c) Each dislocation has moved by one hexagon,
d¼ 4|b|. (d) d¼ 2|b|. The colour of atoms indicates the magnitude of calculated Von
Mises stresses.
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compare with similar studies, we note several differences. Hence, Koizumi et al.
determined a Peierls stress of 1.3� 10�2 eV Å�3 (Koizumi et al. 2000), using the
Stillinger–Weber potential. Our own tests, done in the same conditions, led to a
similar result, but also showed that this low value is due to an incorrect description
of the ABA path energy. In fact, the configuration B, weakly metastable with a
metallic behaviour along the dislocation line (Pizzagalli et al. 2003), is the most
stable with this potential. Ren et al. found a much larger value, 3.6� 10�2 eV Å�3

(Ren et al. 1995), using Stillinger–Weber, but we have no explanation for this
disagreement with Koizumi et al. and with our own tests. Finally, Miyata and
Fujiwara have determined indirectly the Peierls stress from ab initio calculations
and found a value between 14 and 19� 10�2 eV Å�3 (Miyata and Fujiwara 2001),
much larger than our own value. Two possible explanations for such a disagreement
can be found. The first one is related to the 10� 6� 2 simulation cell they
used. Along [121], dislocations in the cell were initially located at a 6|b| distance,
presumably giving 4|b| between a dislocation and its periodic image. The dislocation
distribution is then not truly quadrupolar. Also, along ½�111�11�, the distance between
dislocations is only 3|b|. This leads to a strong interaction between dislocations,
opposed to the dislocation slip. The second reason is related to the use of an elastic
analytical model for estimating the Peierls stress from atomistic calculations. This
unnecessary step is a possible source of errors.

In conclusion, we have performed an accurate determination of the Peierls stress
of a shuffle screw dislocation in silicon, using first principles and two different kinds
of boundary conditions. The calculated value is between 2.4� 10�2 eV Å�3 and
2.8� 10�2 eV Å�3, this range corresponding to the deformation increment of 1%.
Since the uncertainty associated with the computational method is lower, we can
conclude that the Peierls stress is (2.6� 0.2)� 10�2 eV Å�3. This is slightly lower
than the lowest experimental value (Suzuki and Takeuchi 1989). Regarding the
plasticity of silicon, it has been shown that at low temperature perfect shuffle dis-
locations are governing. The shear applied on the system favoured the ABA path
(figure 1), so that the screw dislocation remained in its shuffle plane. We also checked
a possible cross-slip between shuffle and glide planes by performing simulations with
an applied deformation of 10% favouring the ACA path. A slip process was
obtained, the dislocations moving closer during the relaxation. However, the ABA
path was again selected, instead of ACA. Therefore at 0K, whatever the orientation
of the applied shear stress, the undissociated screw keeps gliding in the shuffle set and
does not spontaneously transform into a dissociated configuration in the glide set.
Additional investigations have to be done to better understand the plasticity proper-
ties of silicon, and in particular the transition between shuffle mode at low tempera-
ture to glide mode at high temperature.
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