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Abstract
The stability of the perfect screw dislocation in silicon has been investigated

using both classical potentials and first-principles calculations. Although a recent
study by Koizumi et al. stated that the stable screw dislocation was located in
both the ‘shuffle’ and the ‘glide’ sets of f111g planes, it is shown that this result
depends on the classical potential used, and that the most stable configuration
belongs to the ‘shuffle’ set only, in the centre of one ð�1101Þ hexagon. We also
investigated the stability of an sp2 hybridization in the core of the dislocation,
obtained for one metastable configuration in the ‘glide’ set. The core structures
are characterized in several ways, with a description of the three-dimensional
structure, differential displacement maps and derivatives of the disregistry.

} 1. Introduction
Dislocations in silicon have been the subject of many investigations, experi-

mental, computational and theoretical, not only because they can appear in micro-
electronic devices, but also because of their own properties, closely related to the
covalent nature of bonding in this material. In ordinary conditions, silicon is brittle
below about 6008C (Hirsch, Samuels and Roberts 1989, George and Michot 1993).
Above this temperature, transmission electron microscopy observations show dis-
sociated dislocations (Ray and Cockayne 1971) which thus lie between the narrowly
spaced f111g planes, that is belonging to the glide set. On the basis of computed
generalized stacking-fault energy and entropy calculations on f111g narrowly spaced
(glide set) and widely spaced (shuffle set) respectively (Kaxiras and Duesbery 1993),
the idea was put forward of the possibility of a transition; at low temperatures,
perfect dislocations are easier to nucleate and move in the shuffle set, while the
activation barrier for glide becomes lower for dissociated dislocations in the glide
set at high temperatures (Duesbery and Joos 1996).

Thus, experiments have been undertaken in which, in order to achieve plastic
deformation at temperatures as low as room temperature, the silicon sample is either
submitted to a high confining pressure, of the order of 5 GPa (Rabier et al. 2001), or
subjected to a surface scratch test (Rabier et al. 2000). Under these conditions, the
microstructure has been found to be formed of undissociated dislocations, supposed
to belong to the shuffle set. Favoured dislocation orientations appear to be screw,
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608, 308 and also 418. Similarly, deformation experiments in III–V compounds such
as GaAs, InP and InSb, performed at temperatures down to 77 K by applying a high
confining pressure (Suzuki et al. 1998, 1999a, b), indicate that the low-temperature
plastic deformation is governed by kink pair formation on undissociated screw dis-
locations moving in the shuffle set planes.

Theoretical investigations of the core structures of dislocations in silicon are then
clearly required to bring additional insights. However, despite a large number of
existing atomistic computations, most of these were devoted to partial dislocations
of the glide set, with a particular attention to core reconstructions of the 308 and 908
partials and to mobility properties (cf. for instance the review by Bulatov et al.
(2001)). Less information is available about perfect dislocations. In his pioneering
examination of dislocation cores in diamond cubic structures, Hornstra (1958) quite
naturally placed the screw dislocation line furthest away from any atom row, that is
at the centre of the hexagon formed by six neighbouring h110i dense atom rows; the
dislocation then belongs to the shuffle set; more precisely it is located at the inter-
section of two f111g shuffle planes at 71.538. By somewhat artificially rebonding
atoms, Hornstra also proposed another structure for the screw core, the interesting
idea being that the core is spread over two adjacent hexagons sharing a common
small edge. Arias and Joannopoulos (1994) performed density functional theory
(DFT) calculations of the shuffle screw dislocation in silicon; they found the first
configuration proposed by Hornstra to be stable with respect to spontaneous dis-
sociation and they calculated energy parameters for the core. Finally, in a recent
study, Koizumi et al. (2000) have investigated the core configuration and the
mobility of the ða=2Þh110i screw dislocation using the Stillinger–Weber (SW)
(1985) potential for silicon. They found two stable configurations: the configuration
at the centre of the hexagon, denoted A, has a higher energy and the lower-energy
configuration (denoted B) can be regarded as belonging to both a f111g shuffle plane
and the f111g glide plane at 71.538. Koizumi et al. discussed in detail the very special
part that configuration B might play in the cross-slip mechanism and in the transi-
tion of dislocation glide from the shuffle set to the glide set. It remains to be con-
firmed whether these results are general and not specific to the SW potential.
Regarding the glide set, previous work essentially focused on partial dislocations,
and, to our knowledge, there are no available studies of the perfect screw configura-
tions.

Thus, it is of interest to investigate the core properties of perfect dislocations in
the shuffle and glide sets, and in particular the existence and relative stability of all
proposed configurations of the screw orientation. This paper reports such calcula-
tions, using both DFT formalism and several semiempirical potentials. After a
description of the methods and computational details, we present the different
energy and structural parameters associated with each configuration. These quanti-
ties are then discussed in relation with the previous results, dislocation mobilities and
validity of the classical potentials.

} 2. Computational methods
The atomistic calculations have first been carried out using semiempirical poten-

tials. We have employed the following potentials:

(i) the SW potential, used as reference and also for comparison with previous
work from Koizumi et al. (2000);
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(ii) the Tersoff (1988) potential which is able to give a better representation of a
number of defects than the SW potential does;

(iii) the EDIP (Justo et al. 1998) constructed so as to benefit from the successes
of earlier potentials and incorporating data obtained from DFT calcula-
tions, such as the � surfaces.

It has to be noted that, for dislocation calculations, the EDIP is the only semi-
empirical potential able to account for reconstructions of both 308 and 908 partials in
the glide set. The main advantage of empirical potentials is their low computational
cost, which allows fast calculation of several configurations. Potentials suffer from
limitations, implicitly related to their functional form or limited fitting database, and
calculated energies may prove to be relatively inaccurate, especially for configura-
tions involving highly distorted or broken bonds, as encountered in dislocation
cores. However, by using three different types of potential, we expect to overcome
this issue and to obtain reliable results.

First-principles calculations have also been carried out, in order to discriminate
between configurations, and to calculate more precise defect energies. In addition,
comparisons with empirical potential allowed us to check their reliability for dis-
location core investigations. We performed DFT calculations (Hohenberg and Kohn
1964, Kohn and Sham 1965) in the local density approximation at zero temperature
with the ABINIT (2002) code{. The ionic interactions were represented by norm-
conserving pseudopotentials (Trouiller and Martins 1991). We used a plane-wave
basis with an energy cut-off of 10 Ry and two special k points along the dislocation
line (Monkhorst and Pack 1976). Tests with the generalized gradient approximations
(GGAs), a higher-energy cut-off or a finer k-point sampling have also been con-
ducted for selected configurations. We found an error on the defect energy lower
than 0.5% using five special k points and a cut-off of 14 Ry, and about 5% when
using GGAs.

At first, semiempirical potential calculations were made, for a fast exploration of
several system sizes, thus determining the size effects of the simulation slab on the
results. Suitable simulation box sizes were then selected, small enough for DFT
calculations to remain tractable and large enough for the computed energies to be
meaningful.

} 3. Simulation model
Ideally, we would consider an isolated straight screw dislocation in an infinite

bulk. Along the dislocation line, provided that there is no reconstruction, we have a
periodic situation with a period equal to the Burgers vector a0

1
2 ½110�. Periodic

boundary conditions are then the most suitable choice along the dislocation line.
In the plane perpendicular to the dislocation line, a long-range strain field will be
generated by the dislocation and should be taken into account in the calculation.
Two different methods could be employed.

In the first, no periodic boundary conditions perpendicular to the dislocation line
are applied, and only one dislocation is located in the centre of the simulation
box (figure 1, configuration A). The atomic positions at the boundaries are then
initialized to values calculated with elasticity theory using a numerical code adapted
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from ANCALC (Stroh 1958, 1962) or with a more precise model (Lehto and Öberg
1998). The computational box has to be large enough to prevent a fictitious inter-
action between fixed boundaries and the dislocation core. In addition, atoms located
at the edges of the system are not in a bulk-like environment, and defect energies can
not be directly extracted from total energy calculations. Here, we used such an
approach for semiempirical potential calculations only, because the simulation box
could be enlarged at will, owing to the low computational cost, and also because
defined individual atomic energy allows an easy determination of defect energies.
Typical computational cells involved about 10 000 atoms (dimensions
133 A

	

 132 A

	

 11:5 A

	
for a 40 
 84 
 3 cell). The anisotropic elastic energy per

unit length of the dislocation is given by the well-known formula (Hirth and Lothe
1982)

E ¼ Kb2

4p
ln

R

r0

� �
:

The second method involves periodic boundary conditions along the directions
perpendicular to the dislocation line. In that case, annoying difficulties arise owing
to discontinuities at the boundaries, in particular for a single dislocation. Spurious
shear strain associated with these discontinuities could then have a significant
influence on the dislocation core structure and energetics. These difficulties can be
smoothed by considering dipolar (figure 1, configuration B) or quadrupolar (figure 1,
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Figure 1. Models for straight dislocation simulations. For A, there is no periodic boundary
conditions and only one dislocation in the computational cell (broken lines). B, C and
D show periodic boundary systems with dipolar (B) or quadrupolar (C, D) distribu-
tions of dislocations.



configuration C) arrangements of dislocations in the cell. Whether a dipole or a
quadrupole should be favoured depends on the character of the dislocation; a dipole
is best suited to an edge dislocation whereas a quadrupole minimizes the residual
strain associated with a quadrupole of screw dislocations (Lehto and Öberg 1998).
With the second choice, four dislocations should be included in the cell, with separa-
tion distances large enough to prevent a spurious interaction, which would lead to
large cell sizes. However, as suggested by Bigger et al. (1992), the system could be
divided by a factor of two by relaxing the orthogonality constraints on the periodic
cell (figure 1, configuration D). In this work, the quadrupolar arrangements of
dislocations (figure 1, configurations C and D) have been considered for both semi-
empirical and first-principles calculations. The semiempirical calculations were use-
ful for investigating easily several cell sizes and estimating the non-elastic core–core
energy contributions possibly present for very small cells. We considered computa-
tional cells ranging from 40 
 84 
 3 to 6 
 12 
 3. For ab initio calculations, the
largest 12 
 12 
 1 cell encompasses 144 atoms, with two dislocations.

For a quadrupolar distribution and four dislocations in an orthogonal cell, the
anisotropic elastic energy per unit length is obtained by summation of the interac-
tions between dislocation pairs, calculated using a code adapted from ANCALC
(Stroh 1958, 1962). The total energy can be split up into an interaction energy inside
the cell (Eintra) and half the interaction energy between the quadrupole and all its
periodically repeated images (E inter). A reference (zero) of the elastic energy is
required for determining E intra and is chosen as the elastic energy of a dislocation’s
quadrupole whose distance along the edge is d0. In that case, it can be shown that the
reference distance d0 is equal to the core radius r0 obtained for a single dislocation.
In fact, if the quadrupole is extremely large such that the four dislocations can be
considered as isolated, the elastic energy amounts to four times the self energy of a
single dislocation. The determination of Einter should require an infinite summation
but, in practice, the convergence is quickly achieved. It has to be noted that this is
not the case for a dipolar arrangement, and special handling of the summation is
required (Cai et al. 2001). The derivation of the elastic energy for a quadrupolar
distribution in a non-orthogonal cell (two dislocations per cell instead of four; see
figure 1) is straightforward.

} 4. Results
Table 1 shows the elastic constants calculated with the semiempirical potentials

and first principles. These constants are used for generating the initial configurations
from anisotropic elasticity theory, and extracting core energetics from relaxed
systems.

In figure 2, we show a ð�1101Þ section of the cubic diamond structure, with three
possible locations of the dislocation line. A corresponds to the original position at
the centre of one hexagon (Hornstra 1958), for a screw dislocation belonging to two
shuffle planes. B was recently proposed by Koizumi et al. (2000), at the middle of one
long hexagon bond. It is interesting to point out that, in this case, the dislocation is
located at the crossing of both a shuffle and a glide f111g plane. Finally, another
high-symmetry location on the structure occurs at C, at the middle of a short hexa-
gon bond, with the screw dislocation belonging to two glide planes. Other locations
have been investigated, either inside the hexagon or at the exact position of one
silicon atom but, in all cases, the system relaxed to one of the three selected config-
urations.
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The different energy values resulting from all our calculations are reported in
table 2. The energy differences show that, with ab initio and all potentials but SW,
configuration A is the most stable. We were able to reproduce the results of Koizumi
et al. (2001), B appearing more stable than A by using the SW potential. B is
obtained as the second choice with the ab initio potential and the EDIP, while it
seems highly unfavourable with the Tersoff potential. Another important point con-
cerns the stability of configuration B. Although the relaxation with semiempirical
potentials was straightforward, the geometry of B has been found to be extremely
difficult to retain within a first-principles calculation, even using initial configura-
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Table 1. Experimental (Simmons and Wang 1971) and calculated elastic constants for the
SW (1985) potential, Tersoff (1989) potential and the EDIP (Justo et al. 1998) as well
as our ab initio results. The SW parameters have been rescaled in order to fit the
experimental cohesive energy of 4.63 eV. For a screw dislocation in a cubic diamond
structure, K ¼ C44ðC11 � C12Þ=2½ ��1=2.

Experimental
Value calculated using the following methods

value SW potential Tersoff potential EDIP Ab initio data

B (Mbar) 0.99 1.083 0.978 0.99 0.99

C11 (Mbar) 1.67 1.617 1.425 1.75 1.64

C12 (Mbar) 0.65 0.816 0.754 0.62 0.66

C44 (Mbar) 0.81 0.603 0.687 0.71 0.78

C0
44 (Mbar) 1.172 1.188 1.12 1.09

K 0.64 0.49 0.48 0.63 0.62

Figure 2. Ball-and-stick representation of the ð�1101Þ plane of the cubic diamond structure.
The three circles A, B and C indicate the positions of the dislocation line. Broken
(dotted) lines show the ‘shuffle’ (‘glide’) f111g planes.



tions relaxed with potentials as a starting point. Some or all dislocations of the
quadrupole generally evolved to configuration A or annihilated themselves. Only
in one case were we able to relax the structure. Finally, for all calculations, config-
uration C is never the most stable or is even unstable with the SW potential.

Table 2 also reports the core radii obtained by matching the elastic energy with
the calculated defect energy. For the empirical potential calculations and one unique
dislocation in the computational cell, the core radius r0 is determined by considering
the defect energy contained in the cylinder centred on the dislocation line, with
radius R and height equal to the Burgers vector b (see formula above). The factor
K determined from the calculated elastic constants is used. We considered that the
core radius r0 is already well converged for R ¼ 60 A

	
. For example, the core radius

changes by less than 0.01 A
	

for R ranging between 40 and 60 A
	

, for configuration A
and the SW potential. For first-principles calculations and a quadrupolar distribu-
tion of dislocations, the core radius is determined numerically by inverting the defect
elastic energy. We found that the core radius determination is already very precise
for a 12 
 12 cell, with an uncertainty about 0.01 A

	
. For the smaller 6 
 6 cell, a

0.1 A
	

deviation from converged values was obtained. Most of the values are close to
about 1 A

	
, the commonly used value that is a quarter of the Burgers vector. Only

core radii for B and C with the Tersoff potential and for A with the EDIP are slightly
distant. In table 2, core energy values, often used in the literature, which are obtained
with a core radius equal to the Burgers vector, are also reported.

Figure 3 shows differential displacement maps of the relaxed configurations A, B
and C of the screw dislocations, obtained from systems with one unique dislocation
and relaxed with an empirical potential. For configuration A, the distortion is uni-
formly distributed on the hexagon ring encircling the dislocation line. It is also clear
from the figure that the displacements are identical along the two ‘shuffle’ planes (see
figure 2). Configuration B is characterized by a maximal distortion on the two atoms
on both sides of the ‘shuffle’ plane. Most of the constraints are located on the
hexagon rings sharing these atoms. In the case of configuration C, the maximal
distortion is also located on two atoms, but on both sides of a ‘glide’ plane.
Average deformations are observed for all four hexagon rings around these two
atoms, and equivalent displacements along the two glide planes passing through
the C screw dislocation core. It is noteworthy that, for each geometry, almost iden-
tical pictures have been obtained regardless of the potential considered. One excep-
tion is configuration C with the SW potential, which relaxes to configuration C
represented in figure 3. The initial differential displacement located on the two
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Table 2. Calculated energy parameters for A, B and C screw dislocations. �E is the energy
difference with an uncertainty of 0.01 eV per Burgers vector. r0 is the core radius
(0:03 A

	
). Ec is the core energy, obtained with a fixed core radius equal to the Burgers

vector (0:02 eV A
	 �1). Note that C is not stable with the SW potential; it relaxed to a

configuration with an energy 0.02 eV per Burgers vector higher than A.

�E (eV per Burgers vector) Radius r0 ðA
	
Þ Energy Ec ðeV A

	 �1Þ

EB � EA EC � EA A B C A B C

SW �0.14 0.82 0.91 0.55 0.51
Tersoff 1.08 0.54 0.78 0.35 0.52 0.55 0.84 0.70
EDIP 0.23 0.74 1.49 1.32 0.98 0.37 0.42 0.54
Ab initio 0.32 0.86 1.22 1.03 0.74 0.52 0.60 0.74



atoms next to the dislocation location vanished, and large distortions appeared
involving more distant atoms (see figure 3). We found this configuration to be
unstable with both the EDIP and the Tersoff potential, relaxing to A. In figure 4,
the differential displacement map for a quadrupolar distribution of configuration A,
relaxed with first principles, is represented. Even if the dislocation cores are close and
interact together, it is noteworthy that the general pattern obtained for a unique
dislocation remains easily recognizable in that case.

To characterize the spatial extension of the dislocation core, we have determined
the width at half-maximum (WHM) of the derivative of the disregistry introduced by
the dislocation. The disregistry is obtained by computing the difference of displace-
ments along ð�1101Þ for atoms on either sides of the glide ð�111�11Þ plane (figure 5). The
calculated points are fitted on the simple shape arctan x=�ð Þ of a dislocation (Hirth
and Lothe 1982). The determination of the WHM is then straightforward. In table 3,
we report all values, as well as the WHM calculated in the same way for configura-
tions built from anisotropic elasticity theory. In contrast with the energy ordering, it
appears that the WHMs do not depend on the kind of classical potential, for a given
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Figure 3. Differential displacement maps of the screw dislocation in configurations A, B, C
and C 0 (obtained with SW from C). The arrows are proportional to the out-of-plane
½�1101� shifts between neighbouring atoms introduced by the dislocation. The cross
indicates the position of the dislocation line and the broken line the cut plane.



configuration. For C, the ab initio WHM is also equal to the classical value. It is also
clear that the B core is wider than the A core.

} 5. Discussion
Configuration A has been considered as the most plausible structure for the

undissociated screw dislocation in silicon, but a recent study by Koizumi et al.
(2000) concluded that configuration B is slightly more stable than configuration A.
Our calculations indicate that A is definitely the most stable geometry for the screw
dislocation, using ab initio and two classical potentials. However, with the SW
potential, we were able to reproduce the result of Koizumi et al., which proves
that the apparent stability of B over A is an artefact of the potential. With first-
principles calculations involving various cell sizes, configuration B was found to be
stable in only one case. It seems that the slightest deformation could lead to the
relaxation from B to A. We conclude that configuration B is weakly metastable.
Additional insights are obtained from the analysis of the core. Figure 6 shows three-
dimensional structures of three configurations. A is characterized by the absence of
atomic rearrangements in the core, the main distortions being located on all bonds
forming the hexagon ring encircling the dislocation core. On the contrary, for B, the
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Figure 4. Differential displacement maps of the screw dislocation in configuration A, in the
quadrupolar distribution shown in the figure 1. The arrows are proportional to the
out-of-plane ½�1101� shifts between neighbouring atoms introduced by the dislocation.



main deformations are located on the two atoms close to the core. They are bonded
together and at the same height along ð�1101Þ in the bulk. After introduction of the
dislocation, the atoms now have a height difference of half the Burgers vector along
ð�1101Þ, and they are separated by about 2.8 A

	
. Weak bonds with such an interatomic

distance are possible for silicon. However, each of these atoms already has a
coordination of 3 and would need to accommodate two extra bonds (see figure 6),
which is unlikely to occur. From the analysis of the electronic density, it appears
that, in the core of B, two rows of dangling bonds follow the dislocation line. On the
one hand, these rows may explain the very low stability of this configuration with
first-principles methods. On the other hand, the large range of energy values illus-
trates the difficulty of describing dangling bonds with the classical potentials. The
WHM and therefore the core extension of B are larger than those of A, which may
also explain why B is less stable.
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Figure 5. Variation in the disregistry in the (111) plane along the [121] direction for
the three configurations. The solid curves are fits with the expression
f ðxÞ ¼ b½ð1=pÞ arctanðx=�Þ � 1

2�. The inset graph shows the derivative of the
disregistry for A, and the definition of the WHM.

Table 3. WHM obtained from elasticity (with experimental Cij), classical potentials and ab
initio data. Two values are undetermined, owing to the instability of C with SW, and
the difficulty in obtaining B from first principles in a large cell.

WHM (A
	

) obtained using the following methods

Elastic SW potential Tersoff potential EDIP Ab initio

A 2.7 3.1 3.2 3.2 3.6
B 2.6 3.9 4.0 4.0
C 1.2 0.9 0.9 0.9



We also investigated the possibility of a screw dislocation in the glide set with
configuration C. With all classical potentials and the first-principles method, it is
found that A is more stable than C, with a large energy difference. It is then unlikely
that the core of C could be formed in bulk silicon. However, interesting features are
associated with this structure. The examination of the geometry in the core revealed
that the two atoms on either side of the dislocation line (dark balls in the ball-and-
stick representation in figure 6) have a coordination of 3. Before the introduction of
the dislocation, these two atoms were bonded together, with a height difference of
half the Burgers vector along ð�1101Þ. After the introduction of the dislocation, they
are still bonded together but located at the same height, one bond per atom being
broken. The ab initio interatomic distance between these two atoms is 2.16 A

	
,

whereas distances from neighbouring atoms are about 2.29 A
	

. The three bonds for
each atom are almost coplanar, and the angle between them ranged from 1178 to
1238. All these quantities indicate an sp2 hybridization of these two atoms, with a
double bond between them, which is confirmed by the analysis of the electronic
density. This possibility has already been proposed by Hornstra (1958), on the
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Figure 6. Ball-and-stick representation of the cubic diamond bulk (top left) and of the three
screw core configurations. A six-atom ring (see figure 2) is represented by dark grey
sticks, in order to show the deformation due to the dislocation and the Burgers vector.
Dangling bonds (for B) and sp2 atoms (for C) are represented by black sticks and balls.
The position of the dislocation line is shown by the broken lines.



basis of geometrical arguments only. An sp2 hybridization is not favoured in silicon,
which explained the large defect energy for configuration C. However, it would be
interesting to investigate the competition between screw configurations in diamond
for example, where sp2 is favoured over sp3. It is worth noting that an sp2 character
is also present in recently proposed metastable structures for the 308 and 908 partial
dislocations in diamond (Ewels et al. 2001, Blumenau et al. 2002). One interesting
aspect of configuration C is the tightness of the core. It is difficult to compare A and
C directly since they are not located in the same family of 111 planes. Nevertheless,
insights could be gained by the comparison with the anisotropic elastic solution
(table 3). It is clear that for all potentials, and especially for the ab initio potential,
the relaxed A core is wider than the initial elastic configuration. The effect is even
stronger for configuration B. However, in the case of C, the core is contracted by the
atomic relaxation. The narrowness of C could be partly attributed to the formation
of the double bond in the core.

To our knowledge, configuration A has already been investigated with first-
principles techniques in two previous studies. Arias and Joannopoulos (1994)
found a core energy Ec ¼ 0:56  0:21 eV A

	 �1 whereas Miyata and Fujiwara (2001)
obtained Ec equal to 0.95 eV A

	 �1. These results may be compared with our ab initio
core energy of 0.52 eV A

	 �1 (table 2), very close to the value of the former study.
However, this agreement seems fortuitous, as Arias and Joannopoulos used isotropic
theory and a fitted K � � ¼ 0:29 eV A

	 �3. Miyata and Fujiwara (2001) followed a
similar approach, but with a fitted K � � ¼ 0:48 eV A

	 �3 and obtained a larger core
energy. Instead, here, K factors calculated within anisotropic theory and with the ab
initio calculated elastic constants, very close to the experimental values (see table 2),
are employed. The disagreement between the different studies may be explained by
the poor k-point sampling in the newer study, as well as the use of isotropic theory
with a fitted K factor.

We discussed our results in relation to the screw mobility. As configuration A has
the most stable geometry, possible paths from one minimum to another include
saddle configurations B or C (see figure 2). Koizumi et al. (2000) found a Peierls
stress of about 2 GPa for the non-dissociated screw dislocation, considering the path
A! B ! A. However, this relatively low value may be explained by the use of the
SW potential, and its failure to yield the correct stability of configurations A and B.
In fact, although the Peierls stress cannot be simply determined from static calcula-
tions, several insights may be obtained from the analysis of the energy differences
between configurations. With SW, the energy difference between A and B is only
0.14 eV per Burgers vector. With first principles, we determined a larger energy
difference of 0.32 eV per Burgers vector. It is then reasonable to assume that the
Peierls stress for the path A ! B ! A will be much higher than 2 GPa. This is
confirmed by recent ab initio calculations by Miyata and Fujiwara (2001), where
the Peierls stress ranged from 22 to 30 GPa. Another possible path for dislocation
cross slip would be A ! C ! A. However, the large calculated energy difference
indicates a very large stress, and this possibility may be ruled out solely on the basis
of energy considerations.

Finally, we compared the merits of the classical potentials that we have used in
this study. On the basis of our three investigated configurations, it appears that the
EDIP is more suitable than the SW or the Tersoff potential for this study, the
stability and energy differences being close to the ab initio results. This is not com-
pletely surprising since this potential has been designed specifically to study defects
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(Justo et al. 1998). The worst is maybe the SW potential, which yields the B core as
the most stable configuration. It is worth noting that, although the stabilities of the
different core configurations very much depend on the kind of potential, we obtained
similar atomic structures in almost all cases. Consequently, for relaxing configura-
tions prior to ab initio calculations, one could use any classical potential. However,
for investigating stability, it is necessary to consider several kinds of potential.

} 6. Conclusion
Using anisotropic elasticity theory, several semiempirical classical potentials and

first-principles calculations, we have investigated the properties of the undissociated
screw dislocation in silicon. Considering previous studies and the geometry of the
silicon atomic structure, three possible structures have been selected and compared.
We have shown that configuration A, where the dislocation core is located in the
centre of one hexagon, in the shuffle set, is clearly more stable than the other two
configurations. In a previous study by Koizumi et al. (2000), another configuration,
with the dislocation located in the centre of one long hexagon edge, was favoured.
From our calculations, it appears that this result is explained by the use of the SW
potential, this configuration being less stable with other classical potentials or ab
initio methods. We also investigated a third solution, with the dislocation in the glide
set. Despite its high defect energy, this configuration presents the interesting feature
of an sp2 hybridization of the atoms forming the core. Obviously, such a structure is
worth studying in a material favouring sp2, such as diamond. We also characterized
the spatial extension of the cores of each structure by determining the derivative of
the disregistry. A possible continuation of this work includes the determination
of the mobility of the undissociated screw dislocation in silicon. The study of
other dislocation orientations, such as those recently observed at low temperatures
(Rabier et al. 2000, 2001), would be another working direction.
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