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Defects in free surfaces are expected to be seeds for the nucleation of dislocations, which is the likely way
nanoscale materials suffer plastic deformation. The nucleation results in the competition between the image
force attracting the dislocation to the surface and the applied strain. In this work, two methods based on
molecular dynamics simulations using an embedded atom method �EAM� potential are used to determine the
activation energy and the critical radius for the formation of dislocations from a surface defect in a typical fcc
metal.
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I. INTRODUCTION

When reaching nanoscale dimensions, the properties of
materials may be dramatically altered, issuing a great chal-
lenge in terms of both physical description and technological
applications. In particular, the presence of defects in low-
dimensional materials may significantly modify their me-
chanical, electrical, and optical properties, what can result in
a dramatic effect on the behavior of devices.1 Therefore, a
better understanding of the mechanisms leading to defects
nucleation in these nanostructures is of prime importance.
Contrary to bulk materials for which Frank-Read sources are
usually involved in the occurrence of plasticity,2 nanoscale
materials are unlikely to activate these sources because of
their reduced dimensions. It is assumed that plasticity is then
initiated by the nucleation of dislocations from surfaces, in-
terfaces, or grain boundaries. For example, the elementary
mechanisms occurring in work hardening of nanograined
materials often involve nucleation from grain boundaries.3–6

The nucleation of dislocations from crack tips is assumed to
play a major role in the brittle to ductile transition in
semiconductors.7–9 Finally, in epitaxially grown thin films,
the strain induced by lattice mismatch can lead to the forma-
tion of dislocations at interfaces.10–12

In the case of free surfaces, defects such as steps, terraces,
or hillocks, have been experimentally observed to be favored
places for the formation of dislocations,13 a likely explana-
tion being that they can locally concentrate the strain. How-
ever, experiments can hardly provide information at the
smallest scales involved in the very beginning of the dislo-
cation nucleation. Therefore, a computational approach ap-
pears to be appropriate for a fine investigation of such an
event. Theoretically, dislocations are usually described
within the theory of elasticity,2 where they are treated like
singularities in a continuum. Within this framework, the for-
mation of dislocation loops near a free surface or interface
has been widely discussed,14–18 providing evidence of a com-
petition between loop expansion favoring the stress release
and the attraction of the dislocation by the free surface.
There are therefore a critical size and an energy barrier to
overcome for the dislocation to propagate throughout the
system. These saddle-point parameters are essential in ther-

mally activated processes, and can be considered intrinsic
since they do not depend on external factors beside the ap-
plied strain. Thus, their characterization is a first theoretical
step to the determination of quantities that are observable in
experiments, such as the nucleation stress, which depend on
other factors such as temperature and strain rate.19

Previous investigations suggest that this critical size
should be small, with a half-loop radius of the order of few
nanometers.15,17 The elastic theory is known to fail at such a
scale,2 when the dislocation core is very close to the surface.
It is then advisable to use another approach for investigating
this problem, atomistic simulations with semiempirical po-
tentials being particularly well suited. Such methods grant
access to the desired atomic details and allow the modeling
of large systems. Yet the use of reliable potentials is required,
ensuring that the nucleation event and the shape and core of
dislocations can be accurately reproduced. Embedded atom
method �EAM� potentials for face-centered cubic �fcc� met-
als are possible candidates, since they have been shown to
meet these requirements.20–22 Here we consider aluminum as
a model material because it is ductile at low temperatures,
involving low thermal activation energies.

Former simulations that have focused on bidimensional
aluminum slabs23 have confirmed that the stress concentra-
tion near surface steps facilitates the nucleation of disloca-
tions from these sites, but due to reduced dimensions only
the formation of straight dislocations was allowed. In this
study, the very first stages of plasticity are investigated for
tridimensional systems presenting surface steps, and at high
temperatures, the purpose being to characterize the formation
of dislocation half loops. First, a description of the plastic
events obtained by molecular dynamics �MD� simulations is
presented. Then, specific methods are proposed for charac-
terizing the so-called saddle point, i.e., calculate the critical
radius and the activation energy associated with the nucle-
ation. Two methods based on MD simulations are discussed
and a custom elastic model is developed for comparison.

II. METHODS

The model system is a fcc aluminum slab including two
opposite steps in one surface �Fig. 1�. Periodic boundary

PHYSICAL REVIEW B 78, 064109 �2008�

1098-0121/2008/78�6�/064109�7� ©2008 The American Physical Society064109-1

http://dx.doi.org/10.1103/PhysRevB.78.064109


conditions are applied along the directions X= �01̄1� and Z
= �011�, while �100� surfaces remain free. The steps are built
by adding a monoatomic layer in one surface. The steps line
is orientated along Z, which is the intersection between a
�111� plane, the primary glide plane in an fcc structure and
the free surface. The crystal size used in this study is
170.55�84.42�170.55 Å �142 800 atoms�, and due to the
periodic boundary conditions the smallest distance between
the two steps is 56.85 Å. Simulations on larger crystals have
shown that these dimensions are large enough to have a neg-
ligible influence on the presented results.

MD simulations are performed with the XMD code,24 us-
ing a time step equal to 4�10−15 s, small enough to produce
no energy drift during a 300 K run. Interactions between
atoms are described by the EAM potential for aluminum
proposed by Aslanides and Pontikis,25 fitted on experimental
values of cohesive energy, elastic moduli, vacancy forma-
tion, and intrinsic stacking fault energies, and known to re-
produce correctly the dislocation core structures.20 A tem-
perature is introduced by assigning an initial Maxwell-
Boltzmann distribution of velocities to the atoms and
maintained by a smooth rescaling at each MD step. The
strain is applied by elongating the simulation box along X

= �01̄1�, i.e., orthogonally to the steps, and compressing it
along the Y and Z axes, according to the Poisson’s ratio of
aluminum �=0.35, given by the EAM potential. The use of
isotropic elasticity theory is justified by the low anisotropic
character of this material,26 and the applied strain and stress
are considered linearly proportional, although it is not true at
high applied strain.27

III. RESULTS

A. Formation of dislocation half loops

Tensile tests are performed with MD simulations as fol-
lows. The system is elongated up to 6%, with 1% increment
every 5000 MD steps, i.e., every 20 ps. From then on, re-
duced increments are used, 0.1% every 5000 MD steps, cor-
responding to a strain rate of 5�107 s−1. Figure 2 shows the
typical outcome of a simulation at 100 K as the applied strain
reaches 6.6%. Several dislocation embryos form on both
steps, but quickly vanish, until one of them exceeds a critical
radius and eventually expands in one of the two �111� planes
passing through a step.

The occurrence of dislocation nucleation has been ob-
served in all simulations performed at temperatures ranging
from 80 to 300 K, for an applied strain about 6.5%–6.6%.
This strain limit, although still relatively high, is greatly re-
duced compared to the case of a sample with no step �20%�
and to a simulation performed at 0 K �10%�, revealing the
role of both the step and thermal activation in the initiation
of plasticity. In addition, only straight dislocations were ob-
tained at 0 K, showing that the nucleation of dislocation half
loops requires thermal activation.29 The formed defect is a
Shockley partial, dragging a stacking fault. This is consistent
with both the geometry of the system and the strain orienta-
tion, yielding the highest Schmid factor for Shockley par-
tials.

B. Dislocation half-loop critical radius

In order to determine the critical size associated with the
formation of a stable dislocation half loop for any applied
strain, the following procedure has been used. During a MD
run at 100 K and for an elongation �=6.6%, atomic positions
are saved every 50 steps, i.e., every 0.2 ps, as the dislocation
half loop propagates through the crystal. Each of these con-
figurations corresponds to a given dislocation half-loop ra-
dius R, which is here defined as the distance between the
initial surface step and the dislocation front, and is deter-
mined by monitoring the relative displacements in �111�
glide planes. Only half-loop sizes smaller than half the slab
thickness have been selected in order to minimize the influ-
ence of the bottom surface. Each configuration is then
brought to a lower applied strain, and atomic velocities are
reset to zero in order to erase the system history. Our purpose
is to determine, for the chosen applied strain, whether the
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FIG. 1. Geometry of the system used in the simulations. The
�111� glide planes passing through the step edges are drawn as thick
dashed lines.

FIG. 2. �Color online� Evolution of a system under 6.6% applied strain at 100 K. Only atoms not in a perfect fcc environment are
represented �Ref. 28� �a� Dislocation embryos appear randomly on both steps �arrows� and retract rapidly to the surface. �b�,�c� Only when
it reaches a critical radius will a dislocation half loop propagate into the crystal.
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dislocation half loop will propagate into the crystal or will
retract to the top surface, indicating that the initial radius R
was larger or lower than the critical radius, respectively. At a
given applied strain, systems with increasing dislocation
sizes have been relaxed until a change in the dislocation
propagation direction is observed, yielding the critical radius
of the dislocation half loop.

This method has been performed for several elongations,
thus providing the variation of the dislocation half-loop criti-
cal radius Rc versus the applied strain. The results of these
simulations are shown as diamonds in Fig. 3. Our calculated
Rc variation compares well to a fitted 1 /� curve �dotted line�,
in agreement with the competition between two driving
forces: the image force which roughly varies as 1 /R, and
stress which is proportional to the applied strain �. The criti-
cal radius becomes very small for high applied strains
���6%�, a radius that dislocation embryos may easily reach,
meaning the nucleation becomes more probable. On the con-
trary, Rc dramatically increases as lower strains are applied,
exceeding 40 Å for ��4%. So for low applied strains, the
coherent motion of numerous atoms would be required to
form and propagate a dislocation.

C. Determination of the activation energy

MD simulations also first appear as a good method to
obtain the height of the energy barrier. Indeed, since the
nucleation is a thermally activated event, the reaction rate
theory30 allows one to relate the nucleation time t to the
temperature T and the activation energy Ea via an Arrhenius
law:

t−1 = A . exp�− Ea

kT
� , �1�

where A is a temperature-independent factor, related to the
nucleation attempt frequency and to the entropy of the sys-
tem. It is then possible to determine Ea for a given applied

strain by performing MD simulations at several tempera-
tures.

Here, we have determined the activation energy for the
nucleation of a dislocation half loop for an applied strain of
6.5%. For a given temperature in the range 100–300 K, the
system is first thermalized at �=6.4%. Then, the deformation
is increased to 6.5%, this moment defining the origin of time,
from which the time t until a nucleation event occurs is mea-
sured.

At least four simulations have been performed for each
temperature, and the corresponding nucleation times aver-
aged and drawn on an Arrhenius plot �Fig. 4�. Error bars,
corresponding to the standard deviation, are also drawn and
shrink as the temperature increases. This is consistent with a
thermally activated process: the higher the temperature, the
lower the incertitude on the event time t. Finally, the activa-
tion energy for a strain �=6.5% is estimated to be Ea
	10 meV.

D. Elastic model

Both the critical radius and the activation energy extracted
from MD simulations can be compared to those obtained
within the framework of elasticity. In the simplest case of a
linear and isotropic model, one can first consider a straight
dislocation emitted from a surface step in a continuous elas-
tic medium. This dislocation is submitted to the glide force
associated with the applied strain F���, the so-called image
force due to interaction with the free surface Fi�1 /a, with a
being the dislocation-surface distance, and the force due to
the stacking fault left behind the dislocation as it propagates,
Fsf�� with � being the stacking fault energy per surface
unit.2 The critical dislocation distance ac is reached when the
total force on the dislocation vanishes, i.e., F�+Fi+Fsf=0
projected in the glide plane, which gives

ac =
	b2

4
�1 − ���Ebcos �2� − ��
, �2�

where b is the Burgers vector associated with the dislocation,
E and 	 the Young and shear modulus of the material, re-
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FIG. 3. �Color online� Critical radius Rc vs elongation obtained
by MD �diamonds�; the dotted line is a simple 1 /� fit. The continu-
ous line is the critical distance obtained from elasticity theory for a
straight dislocation �Eq. �2��; the dashed line is the one obtained
from our fitted elastic model for an elliptic dislocation �Eq. �6��.
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FIG. 4. �Color online� Arrhenius plot obtained from molecular
dynamics and for several temperatures T ranging from 100 to 300 K
for a sample elongated by �=6.5%. t is the mean time required for
a nucleation event to occur.
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spectively, � the Poisson’s ratio, � the applied strain, and �2
the angle between the Burgers vector of the dislocation and
the direction of the applied strain �Fig. 1�.

This critical distance ac has been computed for different
elongations, and plotted on Fig. 2 �solid line�. It does not
match the critical radius obtained from MD for a dislocation
half loop, however it reproduces the trend that the critical
radius increases very rapidly for low strains �4%.

A more realistic description can be built within the frame
of elasticity. We consider here an elliptic dislocation half
loop emerging from a surface step in a linear and isotropic
medium. Such a dislocation is submitted to forces derived
from several independent energy contributions: the disloca-
tion self-energy, the dislocation-surface interaction, the re-
laxed strain energy, and the surface step and stacking fault
energies.

The presence of a dislocation half loop of radius R in-
creases the energy of the system by an energy Ed, including
its self-energy and the interaction with the surface. To calcu-
late this contribution, Beltz and Freund15 have developed
convincing arguments for using half the self-energy of a full
circular dislocation loop in an infinite medium,2 and for in-
troducing a geometry-dependent factor m in this expression
to take the interaction with the surface into account:

Ed =
	b2�2 − ��

8�1 − ��
R
ln�8mR

b
� − 2� , �3�

where =b /r0 is the dislocation core factor, r0 being the core
radius. In this model the authors derivate an expression for m
that only depends on the material’s Poisson ratio,31 which
leads to m=0.554, using the value of � given by the EAM
potential for aluminum used here. However, they considered
a glide plane perpendicular to the surface, while in our sys-
tem the glide plane is inclined. Also, our MD simulations
show that dislocations are elliptic rather than circular. To
take these effects into account, one can slightly adjust the
value of m.

The strain energy E� relieved by the dislocation is ex-
pressed as

E� =
− 	b�1 + ��

�1 − ��
e
R2 cos �1 cos �2� , �4�

where cos �1 cos �2 is the Schmid factor, with �1 being the
angle between the normal to the surface and the direction of
the Burgers vector �Fig. 1�, and �2 the same angle as in Eq.
�2�. Here, we introduce an elliptic factor e, corresponding to
the ratio between the two main axes of the elliptic disloca-
tion �Fig. 5�, so the surface covered by the elliptical disloca-
tion half loop is S= �
eR2� /2.

One also has to consider the shrinkage of the surface step.
Here the step height is reduced by 2/3, corresponding to the
projected norm of the Burgers vector, and over a distance
equal to 2eR. The associated relaxed energy can be ex-
pressed as Es=−�2 /3��2eR�S, where �S=5.133
�10−11 J .m−1 is the energy per unit length of the surface
step, calculated with the EAM potential used here.32

Finally, the stacking fault dragged by the dislocation in-
creases the system energy by a factor E�=�
eR2 /2, where
�=0.155 J .m−2 is the intrinsic stacking fault energy per sur-
face unit in aluminum, provided by the EAM potential and in
agreement with experimental data.33,34 This energy is quite
high and has a great influence on the results presented here.

Considering these terms, the variation of the total energy
of the system due to a dislocation half loop propagating from
a surface step is expressed as

E = Ed + E� + Es + E�. �5�

The energy of the system is maximal when the dislocation
half loop reaches the critical radius Rc, i.e., the saddle point
defined by dE /dR �Rc

=0 and d2E /dR2 �Rc
�0, insuring that

the energy decreases as the dislocation radius increases.
From this condition the following self-consistent equation
for the critical half-loop radius is derived:

Rc =
1

16
e�1 + ��cos �1 cos �2�

� b�2 − ��
ln�8mRc

b
� − 1�

+
8e�1 − ��

	b
��
Rc −

4

3
�S�� . �6�

As expected, Rc is nearly inversely proportional to �. Two
parameters, p=m and e, have to be adjusted on the critical
radius curve described above �Fig. 3�. Here we have consid-
ered =2, a typical value in fcc metals,2 yielding m=0.47
and e=0.82, both values being consistent with the consider-
ations assumed above. The Rc-strain curve obtained is re-
ported on Fig. 3 �dashed line�. The agreement with MD
simulations is better than for a straight dislocation, however
it shows slight deviations for both very large and very small
radii.

These differences can be explained because our model is
based on a perfect elliptic dislocation half loop with a con-
stant ratio e between its main axes �Fig. 5�, no matter the
dislocation radius. On the contrary, analysis of the exact
shape of the dislocations formed in the MD simulations
shows that the ratio e decreases as the dislocation propa-

FIG. 5. Comparison between the dislocation shapes obtained by
simulations �solid lines� and the elastic model proposed here
�dashed lines� for two different radii.
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gates, i.e., the dislocation becomes more ellipsoidal when it
goes deeper in the system; hence a model with a constant e
cannot fit the dislocation shape for all radii. In addition, half
loops obtained in simulations are not exactly half ellipses
�Fig. 5�. The elastic solution tends to underestimate the sur-
face covered by the stacking fault, thus reducing its contri-
bution to the total energy and underestimating the associated
critical radius. The strain � may also affect the dislocation
shape since the force on the dislocation front will vary with
� but the force along the step will not; henceforth e may
depend on both the dislocation radius R and the strain �.
Furthermore, the dislocation core becomes larger �hence  is
smaller� when the dislocation approaches a surface. All these
self-consistent dependencies make the problem almost in-
tractable and have been ignored here. Another source of de-
viation is the bottom free surface, which attracts the disloca-
tion in MD simulations and cannot be ignored for large radii.

IV. DISCUSSION

The efficiency of the Arrhenius method for determining
the activation energy associated with the nucleation of a dis-
location half loop is not obvious. Since it is stochastic, many
MD simulations have to be performed, which makes it
highly expensive in terms of computation time. In addition,
for the strain discussed here, �=6.5%, a wide range of nucle-
ation times is obtained, leading to a great relative uncertainty
in the activation energy. To improve the determination, the
energy barrier would have to be chosen higher, i.e., lower
strains have to be considered. However, for �=6.5%, the
nucleation time ranges from 40 to 200 ps, that is up to
50 000 MD steps, and the Rc-strain curve strongly suggests
that for lower strains, the nucleation time will increase very
rapidly. These considerations make difficult the use of such a
method for low strains, hence it is not well suited for a sys-
tematic study of the activation energy at different applied
strains.

Our developed elastic model provides analytical equa-
tions, granting access to the desired variations for any strain.
It requires the fitting of two parameters, which was done here
according to the critical radii obtained from MD simulations.
One can then use elastic expression �5� to compute the varia-
tion of the energy as a dislocation half loop propagates into
the system. This variation is represented in Fig. 6, for several
strains, showing that both the activation energy and critical
radius decrease as the applied strain increases. However, al-
though expression �6� fits well the MD results, the activation
energy obtained from the elastic model is far more sensitive
to the fitted parameters. Hence complementary methods have
to be used to calculate the activation energy for a large range
of applied strains.

For instance, one could use a constrained relaxation
method in order to obtain the energy of the saddle-point con-
figuration, from which the activation energy can be ex-
tracted. Another well-suited method is the nudged elastic
band �NEB� method,35–37 which provides the full minimum
energy path. The NEB method was already successfully used
by Zhu et al.9,19 to characterize the formation of dislocation
half loops from crack tips9 or from ledges in nanopillars,19

and results similar to those presented here were obtained.
From a crack tip, the activation energy for a load of 75% of
the athermal threshold was estimated to be 1.1 eV. From a
nanopillar corner, it was estimated to be about 0.1 eV for the
same load. These results are slightly higher and lower, re-
spectively, than the activation energy evaluated here from the
elastic model. It suggests that the nature of preexisting de-
fects has a strong influence on the nucleation process. In
experiments, various defects may be present, such as higher
steps or terraces, cracks, grain boundaries, dislocations, or
point defects, all of them likely to shift the energy barrier and
thus to change the nucleation stress.

The evolution of the activation energy versus the applied
strain as provided by the elastic model �Eq. �5�� allows one
to compute the activation volume, defined as the derivative
of the activation energy with stress, i.e., ����=−�Ea /��.
The variation of � as a function of strain is represented in
Fig. 7. For an applied strain �=9.3%, both the activation
volume and energy vanish so the nucleation is certain to
happen even at 0 K. This strain level defines the so-called
athermal threshold,38 and is consistent with the elastic limit
obtained previously by energy minimization at 0 K, which
was about 10%.29 For � ranging from about 3.2 to 9.3%, the
nucleation can be considered a thermally activated process,
with associated activation volumes lower than 10b3. For �
�3.2%, both the activation energy and volume become too
high for thermal activation to be observable in MD simula-
tions. Therefore, since MD simulations are bound to typical
times not much longer than a nanosecond, high applied
strains have to be used to achieve and study nucleation. On
the contrary, a typical experiment lasts longer than a second
so nucleation may be observed for strains lower than 3.2%.
Finally, for an elongation lower than about 2.5%, the activa-
tion volume reaches very high values ��1000 b3�, meaning
that the nucleation becomes very unlikely.

The intrinsic parameters defining the saddle-point con-
figuration can hardly be characterized in experiments, but
they can be used to determine the nucleation stress, i.e., the
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FIG. 6. Variation of the system energy vs the dislocation half-
loop radius, calculated using the elastic model presented here for
different applied strains: �=5% �dotted line�, 6% �continuous line�,
and 10% �dashed line�. The so-called activation energy is
represented.
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stress at which one is likely to observe nucleation experi-
mentally. This stress depends on temperature and strain rate
�̇, both quantities that can be varied in MD simulations. Nev-
ertheless, strain rate in MD simulations can hardly be much
lower than 107 s−1, while it is typically less than 1 s−1 in
experiments, which renders direct comparisons difficult. Us-
ing the saddle-point parameters, Zhu et al.19 have shown that
the nucleation stress can be reduced by almost a factor of
two when comparing typical simulation strain rates
��108 s−1� to experimental ones ��10−3 s−1�, especially at
high temperatures. Such a reduction should also occur for the
mechanism studied here.

V. CONCLUSIONS

Molecular dynamics simulations using a semiempirical
potential were used to characterize the activation parameters
associated with the nucleation of a dislocation half loop from
a surface step in an aluminum slab. The dislocation critical
radius was calculated with a good accuracy and shown to
increase very rapidly at low strains. The determination of the
activation energy via Arrhenius plots revealed a poor effi-
ciency, requiring high strains to keep reasonable simulation
time and leading to great uncertainties. Other methods, such
as the NEB method, shall be more appropriate to obtain the
evolution of the energy barrier with strain. Such calculations
are currently in progress to determine the activation energy
in a complementary manner.

Using the theory of elasticity, we have improved an ana-
lytical model providing equations describing the forces and
energy associated with a dislocation half loop in a semi-
infinite medium. Our model, fitted on MD results, supposes
that the nucleated dislocation has an elliptic shape. Using
this model, it is confirmed that both the critical radius, acti-
vation energy, and volume rise to very high values at low
strains.
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